Как определить расстояние до звёзд

Взрыв сверхновой вызовет онкологию

До взрыва Земли дело не дойдет. Пока

Элементарные частицы смогли бы также проникнуть дальше, вплоть до тропосферы, а в некоторых случаях и до поверхности планеты, что для живых существ было бы эквивалентно получению дозы излучения, равной паре-тройке процедур компьютерной томографии. Не слишком смертельно, но некоторое число живых существ могло обзавестись в результате этого злокачественными опухолями в их организмах.

Наконец, как известно, каскады взаимодействия элементарных частиц способны создать условия, при которых начинают генерироваться молнии. Это, в свою очередь, могло бы повысить количество гроз и — как следствие – количество пожаров.

В настоящий момент работа ученых из Канзасского университета ожидает критического обзора на сайте arXiv.org, а затем будет опубликована в научном журнале Astrophysical Journal.

Ближайшей к нам звездой, которая в скором времени может стать сверхновой, является красный сверхгигант Бетельгейзе, расположенный примерно в 650 световых годах от нас. Нужно ли оповещать людей о том, что пора копать подземные бункеры?

Озон и Солнце

В 1968 году на страницах престижного журнала Nature разразилась дискуссия. Биохимик К. Д. Терри и астрофизик Уоллес Такер оценили, что Земля за время существования на ней жизни около 10 раз подвергалась такому облучению от сверхновых, что полученная доза была бы смертельной для большинства лабораторных животных. В конце статьи авторы отметили, что космические лучи «обязательно должны оставить какой-то след в геологической летописи».

Вскоре в журнал поступило возражение от другого американского астрофизика, Говарда Ластера. Он писал, что космические лучи движутся в магнитном поле Галактики сложными запутанными путями, а потому вместо короткого губительного импульса нашу планету ожидает лишь растянутое на сотни лет повышение радиационного фона, недостаточное для массового вымирания. Дискуссия заглохла, пока не появилась свежая идея.

К началу 1970-х годов было обнаружено, что атмосферные ядерные взрывы порождают оксиды азота, разрушающие озоновый слой. В 1974 году физик Малвин Рудерман из Колумбийского университета (США, Нью-Йорк) отметил, что такой же эффект на сотни лет вызовут и космические лучи от близкой сверхновой. Озон защищает поверхность Земли от жесткого солнечного ультрафиолета. Сверхновая может отключить эту защиту, и тогда жизнь на Земле будет уничтожаться самим Солнцем.

Световой год

Единица измерения расстояния в масштабах Вселенной должна была основываться на какой-то абсолютной величине. Таковой является скорость света. Наиболее точное ее измерение было произведено в 1975 г. – скорость света равна 299 792 458 м/с или 1 079 252 848,8 км/ч.За единицу измерения было принято расстояние, которое свет, двигаясь с такой скоростью, проходит в течение земного не високосного года – 365 земных суток. Данная единица была названа световым годом.

В настоящее в световых годах чаще указывается в научно-популярных книгах и фантастических романах, чем в научных трудах. Астрономы чаще пользуются более крупной единицей – парсеком.

Гиперновые взрывы

Гиперновыми называют вспышки, энергия которых на несколько порядков превышает энергию типичных сверхновых. То есть, по сути они гиперновые являются очень яркими сверхновыми.

Как правило, гиперновым считается взрыв сверхмассивных звезд, также называемых гипергигантами. Масса таких звезд начинается с 80 нередко превышает теоретический предел 150 солнечных масс. Также существуют версии, что гиперновые звезды могут образовываться в ходе аннигиляции антиматерии, образованию кварковой звезды или же столкновением двух массивных звезд.

Сверхновая звезда GRB 080913

Примечательны гиперновые тем, что они являются основной причиной, пожалуй, самых энергоёмких и редчайших событий во Вселенной – гамма-всплесков. Продолжительность гамма всплесков составляет от сотых секунд до нескольких часов. Но чаще всего они длятся 1-2 секунду. За эти секунды они испускают энергию, подобную энергии Солнца за все 10 миллиардов лет её жизни! Природа гамма-всплесков до сих пор по большей части остаётся под вопросом.

Чему равен 1 световой год?

Стало очевидно, что для исследования пространств космоса необходима новая единица измерения — и ею стал световой год. За одну секунду свет проходит 300 000 километров. Световой год
это расстояние, которое свет пройдет ровно за год — и в переводе на более привычную систему счисления это расстояние равняется 9 460 730 472 580, 8 километра.
Понятно, что использовать лаконичное «один световой год» намного удобнее, нежели каждый раз применять в расчетах эту огромную цифру.

Из всех звезд ближе всего к нам находится Проксима Центавра — она удалена «всего лишь» на 4,22 световых года. Конечно, в пересчете на километры цифра получится невообразимо огромной. Однако все познается в сравнении — если учитывать, что ближайшая галактика под названием Андромеда отстоит от Млечного Пути на целых 2,5 миллиона световых лет, вышеупомянутая звезда и правда начинает казаться очень близкой соседкой.

Кстати, использование световых лет помогает ученым понять, в каких уголках Вселенной имеет смысл искать разумную жизнь, а куда посылать радиосигналы совершенно бесполезно. Ведь скорость радиосигнала аналогична скорости света — соответственно, приветствие, отправленное в сторону далекой галактики, достигнет цели лишь через миллионы лет. Ответа разумнее ждать от более близких «соседей» — объектов, гипотетические ответные сигналы которых доберутся до земных аппаратов хотя бы в течение жизни человека.

Расстояния до ближайших объектов

Мы мало задумываемся о расстояниях, когда смотрим прямые трансляции из дальних уголков земного шара. Телевизионный сигнал приходит к нам практически мгновенно. Даже с нашего спутника, Луны, радиоволны долетают до Земли за секунду с хвостиком. Но стоит заговорить об объектах более дальних, и тотчас приходит удивление. Неужели до такого близкого Солнца свет летит 8,3 минуты, а до ледяного Плутона – 5,5 часов? И это, пролетая за секунду почти 300 000 км! А для того, чтобы добраться к той же Альфе в созвездии Центавра, лучу света потребуется 4,25 года.

Даже для ближнего космоса не совсем годятся наши, привычные, единицы измерения. Конечно, можно проводить измерения в километрах, но тогда цифры будут вызывать не уважение, а некоторый испуг своими размерами. Для нашей Солнечной системы принято проводить измерения в астрономических единицах.

Теперь космические расстояния до планет и других объектов ближнего космоса будут выглядеть не так страшно. От нашего светила до Меркурия всего 0,387 а.е., а до Юпитера – 5,203 а.е. Даже до самой удалённой планеты – Плутона – всего 39,518 а.е.

До Луны расстояние определено с точностью до километра. Это удалось сделать, поместив на его поверхность уголковые отражатели, и применив метод лазерной локации. Среднее значение расстояния до Луны получилось 384 403 км. Но Солнечная система простирается гораздо дальше орбиты последней планеты. До границы системы целых 150 000 а. е. Даже эти единицы начинают выражаться в грандиозных величинах. Тут уместны другие эталоны измерений, потому что расстояния в космосе и размеры нашей Вселенной – за границами разумных представлений.

Как же определялась дистанция

Какое расстояние между Землей и Солнцем? Астрономы с древних времён задавались таким вопросом. И в 1673 году Джованни Доменико Кассини, итало-французский инженер и астроном, путём вычисления параллакса Марса сумел определить дистанцию до Солнца. Сделал он это из Парижа и после математических вычислений определил, что от Земли до Солнца 138,5 миллионов километров. Это приблизительно на 11,5 миллионов километров меньше за действительность, но по меркам тех времён такое достижение являлось прорывом в науке.

В 60-х годах двадцатого века для вычисления промежутков стали использовать метод радиолокации. Суть в том, что к небесному объекту отправляют короткий и мощный сигнал, а затем получают его отражение. Быстрота распределения радиоволн в космосе равна скорости света, поэтому если точно засечь время прохождения импульса, легко вычислить и дистанцию до любого, не только космического, объекта.

Вот так звездочёты уточнили расстояния до космических объектов. А также было выведено значение астрономической единицы: 1 а. е. = 149.597.870 км +- 1 км. Такой точности оказалось достаточно для науки. В практике используется расстояние, округлённое до 149.600.000 км, оно равняется параллаксу Солнца – 8,794 секунды дуги.

Использование параллакса

Параллаксом называют смещение наблюдаемого объекта относительно удаленного фона при изменении положения наблюдателя. Зная расстояние между точками наблюдения (базис параллакса) и величину углового смещения объекта, несложно рассчитать расстояние до него. Чем меньше величина смещения, тем дальше находится объект. Межзвездные расстояния огромны, и, чтобы увеличить угол, используют максимально большой базис – для этого измеряют положение звезды в противоположных точках земной орбиты. Этот метод называется звездным годичным параллаксом.

Теперь легко понять, как измеряют расстояние до звезд методом годичного параллакса. Оно вычисляется как одна из сторон треугольника, образованного наблюдателем, Солнцем и удаленной звездой, и равно r = a/sin p, где: r – расстояние до звезды, а – расстояние от Земли до Солнца и p – годичный параллакс звезды. Поскольку параллаксы всех звезд меньше 1 угловой секунды (1’’), синус малого угла можно заменить величиной самого угла в радианной мере: sin p ≈ p’’/206265. Тогда получаем: r = a∙206265/p’’, или, в астрономических единицах, r = 206265/p’’.

МКС и New Horizons

Очевидно, что нам нужно что-то более скоростное! Если мы посмотрим на небо в ясную ночь, нам может посчастливиться увидеть очень яркую звезду, летящую над головой с запада на восток с большой скоростью. Эта «звезда» — МКС. Она движется по околоземной орбите со скоростью 28 000 км/ч. Посмотрим, сможет ли МКС быстро преодолеть расстояние в один световой год. МКС нужно 10 часов и около 40 минут для преодоления одной световой секунды. Хм. Это выглядит уже более или менее приемлемо. Но для того, чтобы пролететь световой год МКС потратит почти 38 545 лет!

У нас остается последний туз в рукаве. Космический зонд New Horizons, несколько лет назад побывавший рядом с Плутоном, и таким образом значительно расширивший горизонты познаний человечества. Сейчас он движется со скоростью 50 000 км/ч. Зонд проходит световую секунду почти ровно за 6 часов. Но и он столкнется с проблемой задолго до того, как преодолеет расстояние в один световой год: впереди его ждет 21 585 лет полета!

Среди интересующихся граждан часто возникает вопрос — насколько большую скорость должен развить космический корабль, чтобы преодолеть световой год за время, приемлемое для исследовательских целей? New Horizons, например, потребовалось 10 лет, чтобы достичь своей цели. Возьмем эти 10 лет за ориентир. Нам понадобится скорость 107 925 000 км/ч, чтобы преодолеть расстояние в один световой год за 10 лет!

Но даже этой, пока еще абсолютно утопической скорости, недостаточно для получения быстрых результатов исследований других звездных систем. 30-летнему ученому, руководящему миссией с таким зондом, будет далеко за 70 к тому времени, когда на Землю поступят первые изображения планет системы Проксимы Центавра.

Вот такие, друзья мои, расстояния в космосе. И когда вам кто-нибудь скажет, до до Проксимы Центавра рукой подать – всего каких-то 4,2 световых года, смотрите на этих людей с легкой иронией.

Ведь они такие наивные.

Трансформация белого карлика

Сверхновая типа Ia

Особую категорию сверхновых составляет вспышки Ia класса. Это единственный класс сверхновых звезд, который может происходить в эллиптических галактиках. Такая особенность говорит о том, что эти вспышки не являются продуктом смерти сверхгигантов. Сверхгиганты не доживают до того момента, как их галактики «состарятся», т.е. станут эллиптическими. Также все вспышки этого класса имеют практически одинаковую яркость. Благодаря этому сверхновые Ia типа являются «стандартными свечами» Вселенной.

Они возникают по отличительно иной схеме. Как отмечалось ранее, эти взрывы по своей природе чем-то сходны с новыми взрывами. Одна из схем их возникновения предполагает, что они также зарождаются в тесной системе белого карлика и его звезды-компаньона. Однако, в отличие от новых звезд, здесь происходит детонация иного, более катастрофического типа.

По мере «пожирания» своего компаньона, белый карлик увеличивается в массе до тех пор, пока не достигнет предела Чандрасекара. Этот предел, примерно равный 1,38 солнечной массы, является верхней границы массы белого карлика, после которого он превращается в нейтронную звезду. Такое событие сопровождается термоядерным взрывом с колоссальным выделением энергии, на много порядков превышающим обычный новый взрыв. Практически неизменное значение предела Чандрасекара объясняет столь малое расхождение в яркостях различных вспышек данного подкласса. Эта яркость почти в 6 миллиардов раз превышает солнечную светимость, а динамика её изменения такая же, как у сверхновых Ib, Ic класса.

Парсек и его производные

Название «парсек» как «параллакс угловой секунды». Угловая секунда – это единица измерения угла: окружность делится на 360 градусов, градус – на 60 минут, минута – на 60 секунд. Параллаксом называется изменение наблюдаемого положения объекта в зависимости от расположения наблюдателя. По годичному параллаксу звезд вычисляется расстояние до них. Если представить себе прямоугольный треугольник, один из катетов в котором – полуось земной орбиты, а гипотенуза – расстояние между Солнцем и другой звездой, то размер угла в нем – годичный параллакс данной звезды.

При определенном расстоянии годичный параллакс будет равен 1 угловой секунде, вот это расстояние и было принято за единицу измерения под названием парсек. Международное обозначение этой единицы – pс, российское – пк.

Парсек равен 30,8568 трлн км или 3,2616 светового года. Впрочем, для космических масштабов и этого оказалось недостаточно. Астрономы пользуются производными единицами: равен 1000 пк, – 1 млн пк, а – 1 млрд пк.

Классификация сверхновых

Классификация сверхновых

Сверхновые принято разделять на два основных класса (I и II). Эти классы можно назвать спектральными, т.к. их отличает присутствие и отсутствие линий водорода в их спектрах. Также эти классы заметно отличаются визуально. Все сверхновые I класса схожи как по мощности взрыва, так и по динамике изменения блеска. Сверхновые же II класса весьма разнообразны в этом плане. Мощность их взрыва и динамика изменения блеска лежит в весьма обширном диапазоне.

Все сверхновые II класса порождаются гравитационным коллапсом в недрах массивных звезд. Другими словами, этот тот самый, знакомый нам, взрыв сверхгигантов. Среди сверхновых первого класса существуют те, механизм взрыва которых скорее схож с взрывом новых звезд.

1 световой год это сколько земных лет?

Широко распространено ошибочное мнение, что световой год является единицей измерения времени. На самом деле, это не так. Термин не имеет никакого отношения к земным годам, никак с ними не соотносится и обозначает исключительно расстояние, которое свет проходит за один земной год.

Делитесь нашими статьями!

Световой год

Во время исследований своей планеты людям требовались различные меры измерения расстояний и отрезков. Изначально меры длины были неточными, потому что у разных народов были свои способы измерения

Только в 1791 году ученые из Франции ввели меру, которую используют и по сей день – метр (от греческого – «мера»).
Но в начале ХХ века люди начали обращать свое внимание на изучение космоса. И то, что Вселенная имеет невероятные расстояния, уже существующая метрическая система оказалось неподходящей для измерения столь больших расстояний

Есть возможность измерить в километрах расстояние от нашей планеты до Луны или до Марса, однако если измерять расстояния до других планет, а то и звезд, то в цифре будет невероятное количество нулей.
И тогда ученые решили ввести термин «световые года».

Близко, но не очень

Теперь давайте рассмотрим понятие «близко». Измерить расстояние до ярко-красной гигантской звезды, такой как Бетельгейзе, не так-то просто. Различные методы измерений дают значения в диапазоне от 520 до почти 700 световых лет. Это примерно в 150 раз дальше, до чем Альфы Центавра. Бетельгейзе выглядит пугающе на нашем небе потому, что она огромна и очень ярко светит. Но даже используя самую ближнюю из оценок расстояния до Бетельгейзе — это все равно слишком далеко, чтобы нанести значительный ущерб Земле.

Материал, который будет выброшен после взрыва сверхновой, будет быстро расширяться и охлаждаться. И его плотность и температура станут совсем незначительными задолго до того, как он достигнет Земли.

Излучение, возникнувшее после взрыва сверхновой, безусловно, будет иметь некоторые ощутимые последствия для окружающей среды Земли. Но, вероятно, и они будут незначительным.

Бетельгейзе находится слишком далеко, чтобы существенно ионизировать атмосферу Земли. Один из способов оценки возможного риска — это проанализировать последствия возникновения сверхновых рядом с нами в прошлом. Но никаких очевидных доказательств существования подобных процессов в прошлом мы не наблюдаем. Это является одним из убедительных доказательств того, что только самые близкие сверхновые могут представлять какой-то риск для жизни на нашей планете.

Мнения расходятся

Астрономы считают, что вспышки сверхновых на расстоянии менее 100 световых лет от Земли будут катастрофическими, но последствия остаются неясными и будут зависеть от того, насколько мощным окажется взрыв. Группа исследователей утверждает, что вероятна вспышка намного ближе и мощнее, чем взрыв Бетельгейзе. Когда дойдет до этого, неизвестно, но Земля будет серьезно повреждена. Правда, другие исследователи, такие как Алекс Филиппенко из Калифорнийского университета в Беркли, специалист по сверхновым, активным галактикам, черным дырам, гамма-всплескам и расширению Вселенной, не согласен с расчетами и верит, что вспышка, если она произойдет, вряд ли повредит планету.

— красный сверхгигант. В переводе с арабского языка — «Байт Аль Джаузза», что означает «Рука Центрального». Является одной из самых больших звезд известных астрономам. Вторая по яркости звезда в созвездии Ориона после Ригеля. Расстояние от нашей планеты до звезды 650 световых лет. Напомним что световой год – это расстояние которое луч света проходит за 365 дней и равен 9 460 730 472 580 820 метрам. Теперь вы примерно можете представить себе насколько велико расстояние между планетами и звездами.

Если сравнить Бетельгейзе с нашим Солнцем, то окажется что диаметр звезды больше Солнца в 1000 раз и ярче его в 100 тысяч раз. Масса звезды больше массы Солнца в 17 раз и в 300 миллионов раз больше по объему.

Бетельгейзе испускает струи газа, длина которых в шесть раз превышает размер самой звезды. Это видео поможет оценить соотношение размеров нашего Солнца и красных сверхгигантов:

Также за время наблюдения было замечено, что диаметр звезды уменьшается. С 1993 года и до 2011 года он уменьшился с 5,5 до 4,5 астрономических единиц. При этом на яркость звезды это уменьшение никак не повлияло.

На ночном небе будет девятой по степени яркости звездой. По догадкам ученых возраст звезды не превышает 10 миллионов лет. Нашему солнце для примера уже около 4,57 миллиарда лет.
Но век сверхгигантов не долог в отличие от желтых карликов, коим является наше Солнце. И видимо очень скоро Бетельгейзе погибнет, взорвавшись и превратившись в сверхновую. Так как свет от Бетельгейзе доходит до нас через 650 световых лет, есть мнение отдельных ученых о том, что она уже взорвалась и свет взрыва достигнет Земли в 2012 году.

К нашей общей радости звезда находится на значительном расстоянии от нашей Солнечной системы и людям практически ничего не угрожает. Возможен выход из строя электроники на Земле и у орбитальных спутников. Пройдет невиданные до сих пор Северные Сияния, и уменьшение озонового слоя. После взрыва звезды в небе появиться второе “Солнце” которое в течении нескольких недель создаст эффект белых ночей в некоторых частях земного шара. Затем через несколько лет оно угаснет и превратиться в туманность по типу Крабовидной.

Влияние на Землю

Сверхновая звезда, взорвавшись поблизости, естественно, не может не повлиять на нашу планету. Например, Бетельгейзе, взорвавшись, увеличит яркость примерно в 10 тысяч раз. Несколько месяцев звезда будет иметь вид сияющей точки, по яркости подобной полной Луне. Но если какой-либо полюс Бетельгейзе будет обращён на Землю, то она получит от звезды поток гамма-лучей. Усилятся полярные сияния, уменьшится озоновый слой. Это может оказать очень негативное влияние на жизнь нашей планеты. Всё это только теоретические расчёты, каким же фактически будет эффект взрыва этого супергиганта, точно сказать нельзя.

Смерть звезды, так же, как и жизнь, иногда бывает очень красивой. И пример тому – сверхновые звёзды. Их вспышки мощны и ярки, они затмевают все светила, что расположены рядом.

Световой год и другие расстояния

Поскольку расстояния в огромны, измерение их в привычных единицах было бы нерациональным и неудобным. Исходя из этих соображений, была введена специальная – световой год, то есть расстояние, которое свет проходит за так называемый юлианский год (равный 365,25 суток). Учитывая, что каждые сутки содержат в себе 86 400 секунд, можно вычислить, что за год луч света преодолевает расстояние нескольким более 9,4 километров. Эта величина кажется огромной, однако, например, расстояние до ближайшей к Земле звезды Проксимы Центавра составляет 4,2 года, а диаметр галактики Млечный Путь превышает 100 000 световых лет, то есть те визуальные наблюдения, которые можно сделать сейчас, отображают картину, существовавшую около сотни тысяч лет назад.

В профессиональной астрофизике понятие светового года используется редко. Ученые преимущественно оперируют такими единицами, как парсек и астрономическая единица. Парсек – это расстояние до воображаемой точки, с которой радиус орбиты Земли виден под углом в одну угловую секунду (1/3600 градуса). Средний радиус орбиты, то есть расстояние от Земли до Солнца, называется астрономической единицей. Парсек равен примерно трем световым годам или 30,8 триллиона километров. Астрономическая единица приблизительно равна 149,6 миллиона километров.

Совет 3: Есть ли единица измерения расстояния большая, чем световой год

Метры, километры, мили и другие единицы измерения с успехом использовались и продолжают использоваться на Земле. Но освоение космоса поставило вопрос о введении новых мер длины, ведь даже в пределах Солнечной системы можно запутаться в нулях, измеряя расстояние в километрах.

Для измерения расстояния в пределах Солнечной системы была создана астрономическая единица – мера расстояния, которая равна среднему расстоянию между Солнцем и Землей. Впрочем, даже для Солнечной системы эта единица представляется не вполне подходящей, что можно показать на наглядном примере. Если представить, что центр небольшого стола соответствует Солнцу, а астрономическую единицу принять за 1 см, то для обозначения облака Оорта – «внешней границы» Солнечной системы – придется отойти от стола на 0,5 км.

Если астрономическая единица оказалась недостаточно большой даже для Солнечной системы, тем более нужны были другие единицы для измерения расстояний между звездами и галактиками.

Сверхновые из-под воды

Обвинение в убийстве динозавров со сверхновых сняли. Однако это не значит, что они не были замешаны в других глобальных катастрофах. Работа Альваресов показала, что искать надо характерные для сверхновых радиоактивные изотопы. Найти их удалось уже в XXI веке.

На дне океанов постепенно осаждаются металлы, растворенные в воде. В результате образуются железомарганцевые конкреции. В 2016 году журнал Nature опубликовал анализ изотопного состава конкреций из Тихого, Индийского и Атлантического океанов. Оказалось, что в слоях возрастом 1,7–3,2 и 6,5–8,7 млн лет в десятки раз повышено содержание железа-60. Этот изотоп, в отличие от стабильного железа-56, имеет период полураспада всего 2,6 млн лет, и земных источников у него нет. Он мог появиться только при недавних взрывах сверхновых.

В том же выпуске Nature другие исследователи проанализировали, как порожденные сверхновыми изотопы могли попасть на Землю. Чтобы их не сдул солнечный ветер, они должны были оседать на частицах межзвездной пыли. А продолжительные интервалы накопления объясняются тем, что Солнечная система каждый раз проходила через несколько остатков сверхновых. К счастью, все эти взрывы происходили не слишком близко к нам. По современным оценкам, сверхновая в 30 световых годах вызвала бы катастрофические нарушения в климате и биосфере, но такое, по-видимому, случается лишь раз в миллиард лет. Сверхновые, оставившие след в железомарганцевых конкрециях, взрывались в сотнях световых лет, и лишь потом на Землю оседала их радиоактивная пыль.

В 2020 году американские исследователи предложили новую версию массового вымирания в конце девонского периода (359 млн лет назад). Тогда резко упало содержание озона в атмосфере, а в отложениях находят изотопы самария-146 и плутония-244. Авторы считают это указанием на взрыв сверхновой чуть дальше радиуса катастрофического поражения — в 60-70 световых годах от Солнечной системы.

Световой год общие сведения

Как известно, из теории относительности Эйнштейна скорость света является инвариантом – неизменной величиной, независящей от выбора системы отсчета

То есть неважно, находитесь вы на Земле или мчитесь сквозь пространство на космическом корабле, чья скорость близка к скорости света, и в том, и в другом случае скорость света будет одна и та же. А это значит, что тот путь, который пройдет свет за определенное время, всегда будет точно известен – ведь скорость света неизменна

Таким образом, световой год – это расстояние, которое проходит свет в вакууме за время, равное одному юлианскому году (365 с четвертью дней).

Скорость света

Скорость света величина конечная, хоть это сложно представить. За одну секунду свет проходит расстояние 299792458 метров, т.е. его скорость равна 299792458 м/с или 1079252848,8 км/ч или 299792,458 км/с.

Скорость света считается непреодолимой скоростью для физических тел (по крайней мере, в нашей части Вселенной). Единственный, кто может двигаться с такой скоростью — это безмассовый фотон.

Со скоростью света бьют молнии, течет ток в проводах и распространяются электромагнитные волны.

Как определили скорость света

С какой скоростью свет достигает темных уголков комнаты при зажигании свечи – всегда интересовала людей. Но самые первые размышления на эту тему приходили к выводу, что скорость света мгновенная.

Однако, это не так.

И первым, кто решил узнать точную цифру, стал Олаф Ремер. В 1676 году, наблюдая за спутником Юпитера Ио, он заметил, что время, которое длится затмение Юпитером спутника зависит от того, как именно находятся Земля и Юпитер. Если наша планета близка к самой большой планете, то временной промежуток уменьшается. И наоборот, если дальше – увеличивается.

Ремер получил значение скорости света 214000 км/с. Такое расхождение обусловлено грубостью тогдашних приборов измерения.

В 1728 году Джеймс Бредли получил максимально близкую величину скорости света – 301000 км/с. Он измерял положение звезды относительно того, как Земля обращается вокруг Солнца.

В 1849 году, в земных условиях, измерением скорости света занялся Арман Физо. Французский физик пропускал луч света через диск с зубчиками, который отражался от зеркала и возвращался обратно, проходя расстояние 8 километров. Его измерения дали значение 315000 км/с.

Многие физики и астрономы измеряли скорость света и получали значения максимально близкое к истинному. И только в 1983 году на Генеральной конференции по мерам и весам была принято окончательное значение, ставшее фундаментальным в физике.

Какова скорость света?

Что такое скорость света

Несмотря на то что Бредли произвел достаточно верные расчеты, определить точную скорость смогли лишь в XX столетии. Для этого использовали современные лазерные технологии. Совершенное оборудование позволило сделать расчеты с поправкой на коэффициент преломления лучей. В результате эта величина составила 299 792,458 километров в секунду.

Кстати, данными цифрами астрономы оперируют по сей день. В дальнейшем нехитрые вычисления помогли с точностью установить время, которое лучам необходимо на облет орбиты земного шара без воздействия на них гравитационных полей.

Хотя скорость света не сопоставима с земными расстояниями, ее использование при вычислениях объясняется тем, что люди привыкли мыслить «земными» категориями.

Цефеиды

Для измерения расстояний в космосе можно использовать определенные типы звезд, называемых Цефеидами. Цефеида

— пульсирующая звезда с точной зависимостью светимости (яркости) от периода пульсации. Чем больше этот период, тем выше яркость Цефеид. Эта корреляция между периодом пульсации я светимостью хорошо известна и все Цефеиды ведут себя одинаково. Поэтому, если известен период пульсации, который несложно наблюдать, можно измерить светимость звезды. Мы знаем, что чем дальше звезда, тем меньше ее яркость. Таким образом, если сравнить реальную яркость с кажущейся, можно определить расстояние до звезды.

Пульсация цефеид обусловлена их сжатием и расширением. При этом их яркость изменяется, и для определения периода нужно измерить время между точками с максимальной яркостью. Ядро звезды не изменяет размеры, однако их внешние газовые слои расширяются и сжимаются вследствие флуктуаций давления газа в этих слоях. Сжатие и расширение происходит за счет двух сил: гравитационного притяжения, которое приводит к сближению молекул газа в направлении центра звезды, и давления газа, которое приводит к расширению внешнего слоя.


Схематическое изображение пульсирующей Цефеиды с периодом в два дня. Пики светимости 1 декабря 2010 г., когда звезда начинает постепенно терять яркость. 2 декабря яркость минимальная. Затем звезда снова достигает максимальной светимости 3 декабря и уменьшает светимость 4 декабря и так далее

Когда звезда находится в сжатом состоянии, ее фотоны имеют высокую энергию и в результате давление повышается, что приводит к расширению внешней оболочки звезды. Когда это давление падает и становится меньше гравитационных сил, сжимающих оболочку, звезда сжимается. Затем процесс повторяется.

Цефеиды можно использовать для измерения расстояний до 40 миллионов парсеков, то есть намного больших, чем позволяет метод параллакса. Недостаток метода — цефеиды не так уж часто встречаются.

Масштабы Вселенной

Чтобы хотя бы немного приблизиться к ответу на вопрос, каковы размеры Вселенной, необходимо оценить масштабы отдельных ее частей. Для человека обогнуть земной шар задача сложная, но вполне выполнимая. А теперь представьте, что наша планета по сравнению с Сатурном, как монетка в сравнении с баскетбольным мячом. А по отношению к Солнцу Земля вообще выглядит как маленькое зернышко.

Вся Солнечная система также не обладает значительной протяженностью в масштабе Вселенной. Если рассматривать пределом системы границу гелиосферы, ее протяженность составляет около 120 астрономических единиц. При этом за одну а.е. принимают расстояние, равное ~ 150 млрд. км. А теперь представьте, что диаметр всей галактики Млечный путь, частью которой является Солнце с окружающими его планетами, равен 1 квинтиллиону километров. Это число в 18 нулями.  А само скопление разных небесных тел содержит, по разным подсчетам, от 2*1011 до 4*1011 звезд, большинство из которых превосходят по размерам наше небесное светило.

И ведь Млечный путь – не единственная галактика во всем космическом пространстве. На звездном небе Земли невооруженным глазом можно рассмотреть соседние звездные скопления: Андромеду, Большое и Малое Магеллановы облака. Расстояния до них измеряется в мегапарсеках — в миллионах световых лет. И каждая из них также простирается на немыслимые для человеческого разума расстояния.

Все скопления звезд группируются в крупномасштабные объединения – группы галактик. К примеру, Млечный путь и соседние формирования входят в Местную группу диаметром около 1 мегапарсека. Представьте, для того, чтобы лучу света пройти ее из одного конца в другой, понадобится 3,2 млн. лет.

Но и эта величина не является самой большой. Группы галактик, в свою очередь, объединены в сверхскопления или суперкластер. Эти крупномасштабные вселенские  структуры содержат сотни и тысячи галактических групп и миллионы звездных формирований. Так, в Суперкластере Девы, куда входит Млечный путь, расположено более 100 групп галактик. Протяженность этой структуры составляет более 200 млн. световых лет и эта лишь часть гигантского формирования Ланиакея.

Центр тяжести Ланиакеи – сверхскопление Великий аттрактор, притягивает к себе все остальные структуры этой части космического пространства. Его можно смело назвать центром Вселенной, с оговоркой, что это лишь сердцевина познанного нами космоса. Вся же Ланиакея имеет диаметр более 500 млн. световых лет. И, чтобы в окончательно осознали масштабы Вселенной, представьте, что это гигантское образование – всего лишь  та малая часть космоса, которую смог обозреть и представить человек.

Расстояния в цифрах

Расстояния в Солнечной системе:

  • 1 а.е. от Земли до Солнца = 500 св. секунд или 8,3 св. минуты
  • 30 а. е. от Солнца до Нептуна = 4,15 световых часа
  • 132 а.е. от Солнца – таково расстояние до космического аппарата «Вояджер-1», было отмечено 28 июля 2020 года. Данный объект является самым отдаленным из тех, что были сконструированы человеком.

Расстояния в Млечном Пути и за его пределами:

  • 1,3 парсека (268144 а.е. или 4,24 св. года) от Солнца до Проксима Центавра – ближайшей к нам звезды
  • 8 000 парсек (26 тыс. св. лет) – расстояние от Солнца до центра Млечного Пути
  • 30 000 парсек (97 тыс. св. лет) – примерный диаметр Млечного Пути
  • 770 000 парсек (2,5 млн. св. лет) – расстояние до ближайшей большой галактики – туманность Андромеды
  • 300 000 000 пк — масштабы в которых Вселенная практически однородна
  • 4 000 000 000 пк (4 гигапарсек) – край наблюдаемой Вселенной. Это расстояние прошел свет, регистрируемый на Земле. Сегодня объекты, излучившие его, с учетом расширения Вселенной, расположены на расстоянии 14 гигапарсек (45,6 млрд. световых лет).

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: