Списки галактик
Местная группа
Галактика | Расстояние (млн. св. лет) | Созвездие | Тип |
---|---|---|---|
БМО | 0,168 | Золотая Рыба Столовая Гора | SBm |
ММО(NGC292) | 0,2 | Тукан | SBm |
NGC 6822 | 1,63 | Стрелец | IBm |
NGC 185 | 2,05 | Кассиопея | E |
NGC 147 | 2,2 | Кассиопея | dE5 |
M33 | 2,4 | Треугольник | Sc |
M31 | 2,5 | Андромеда | Sb |
M32 | 2,9 | Андромеда | E2 |
M110 | 2,9 | Андромеда | E5 |
NGC 3109 | 4,3 | Гидра | Sbm |
IC 342 | 10,7 | Жираф | Sab |
NGC 5128 | 12 | Центавр | S0 |
M81 | 12 | Большая Медведица | Sb |
M82 | 12 | Большая Медведица | Sd |
NGC 3077 | 12,8 | Большая Медведица | Sc |
ESO 97-G13 | 13 | Циркуль | SA(s)b |
M108 | 14,1 | Большая Медведица | Sd |
M83 | 15 | Гидра | Sc |
M94 | 16 | Гончие Псы | Sab |
M106 | 23,7 | Гончие Псы | SBbc |
M65 | 24 | Лев | Sa |
M64 | 24 | Волосы Вероники | Sab |
M101 | 27 | Большая Медведица | SA(sr)c |
M104 | 29,5 | Дева | Sa |
M74 | 30 | Рыбы | Sc |
M96 | 31 | Лев | SBab |
M105 | 32 | Лев | E1 |
NGC 5195 | 32 | Гончие Псы | S0 |
M95 | 32,6 | Лев | SBb |
M66 | 35 | Лев | Sb |
M51 | 37 | Гончие Псы | SAbc |
M63 | 37 | Гончие Псы | Sbc |
M109 | 46,3 | Большая Медведица | SBbc |
M88 | 47,5 | Волосы Вероники | Sb |
M49 | 49,5 | Дева | E2 |
M89 | 50 | Дева | E |
M61 | 52 | Дева | SBbc |
M100 | 52,5 | Волосы Вероники | SBbc |
M90 | 58,7 | Дева | SBab |
M85 | 60 | Волосы Вероники | S0-a |
M98 | 60 | Волосы Вероники | SBb |
M99 | 60 | Волосы Вероники | Sc |
M87 | 60 | Дева | E1 |
M59 | 60 | Дева | E5 |
M60 | 60 | Дева | E2 |
M84 | 60 | Дева | E1 |
M91 | 63 | Волосы Вероники | SBb |
M58 | 68 | Дева | SBb |
Страница: 0
en: List of galaxies
de: Liste der hellsten Galaxien
У вселенной нет границ
Артур Косовский, профессор физики Питтсбургского университета
«Одним из самых фундаментальных свойств вселенной является ее возраст, который, согласно различным измерениям, мы сегодня определяем как 13,7 миллиарда лет. Поскольку мы также знаем, что свет распространяется с постоянной скоростью, это означает, что луч света, который появился в ранние времени, прошел к сегодняшнему дню определенное расстояние (назовем это «расстоянием до горизонта» или «расстоянием Хаббла»). Поскольку ничто не может двигаться быстрее скорости света, расстояние Хаббла будет самым дальним расстоянием, которое мы когда-либо сможем наблюдать в принципе (если не обнаружим какой-либо способ обойти теорию относительности).
У нас есть источник света, идущий к нам почти с расстояния Хаббла: космическое микроволновое фоновое излучение. Мы знаем, что у вселенной не существует «края» на расстоянии до источника микроволнового излучения, которое находится почти на целой дистанции Хаббла от нас. Поэтому мы обычно предполагаем, что вселенная намного больше, чем нам собственный наблюдаемый объем Хаббла, и что настоящий край, который может существовать, находится намного дальше, чем мы когда-либо могли наблюдать. Возможно, это неверно: возможно, край вселенной находится сразу за дистанцией Хаббла от нас, а за ним — морские чудища. Но поскольку вся наблюдаемая нами вселенная везде относительно одинакова и однородна, такой поворот был бы очень странным.
Боюсь, у нас никогда не будет хорошего ответа на этот вопрос. У Вселенной может вообще не быть края, а если он и есть, то будет достаточно далеко, чтобы мы его никогда не увидели. Нам остается постигать лишь ту часть Вселенной, которую мы действительно можем наблюдать».
А у вас есть предположения, что находится на краю Вселенной? Расскажите в нашем чате в Телеграме.
Великий аттрактор
Огромная концентрация массы обнаружилась на расстоянии 250 миллионов световых лет, близ созвездий Гидры и Центавра. Ее вес настолько велик, что его можно было бы сравнить с десятком тысяч масс Млечных Путей. Эта аномалия считается галактическим сверхскоплением.
Этот объект получил название Великий аттрактор. Его гравитационная сила настолько сильна, что воздействует на другие галактики и их скопления в течение нескольких сотен световых лет. Он долгое время оставался одной из самых больших тайн космоса.
В 1990 г. было обнаружено, что движение колоссальных скоплений галактик, называющихся Великим аттрактором, стремится к другой области космоса — за край Вселенной. Пока что за этим процессом можно наблюдать, хотя сама аномалия находится в «зоне избегания».
Активные галактики
Это тип галактики, излучающий больше энергии, чем обычная. Млечный Путь считается стабильным. По сравнению с ним, активные выделяют в 100 раз больше энергии. Это происходит из-за взрывов в ядре. Энергия высвобождается в виде радиоволн. Есть несколько разновидностей таких галактик.
Типичный вид Сейфертовской галактики — спиральная галактика NGC 1566
Сейфертовские галактики напоминают спиральные с чрезвычайно активным ядром. Больше всего интереса вызывают квазары, потому что за 1 секунду способны выплеснуть столько энергии, сколько Солнце производит за все свое существование. Они напоминают звезды и считаются наиболее энергичными объектами. Многие полагают, что квазары выступают активными ядрами далеких галактик на ранних эволюционных стадиях. Свет движется к нам миллиарды лет и может поступать даже с самого начала Вселенной.
Как же узнали о нашей галактике? Древние люди наблюдали в небе светлую полосу и назвали ее Млечным Путем. В конце 1500-х гг. Галилео Галилей впервые посмотрел на звезды в телескоп и понял, что эта полоса представлена множеством отдельных объектов. В 1755 году Иммануил Кант предположил, что наша галактика – линзовидная звездная группа и во Вселенной еще много таких.
Проходили годы и ученые знакомились с галактикой ближе, но все еще ставили Солнце в ее центре. В 1918 году все изменилось, когда Харлоу Шепли понял, что мы находимся на периферии галактики.
Галактика-глаз
Диск спиральной галактики IC 2163 кажется огромным глазом в космос. Эта особенность в форме глаза на самом деле представляет собой огромный поток звезд и пыли, возникающий, когда IC 2163 (справа на изображении) соприкасается с другой спиральной галактикой, NGC 2207 (слева). Эти особенности сохраняются всего несколько десятков миллионов лет, сказал астроном Микеле Кауфман, который сообщил об открытии в 2016 году. Это буквально «мгновение ока» в продолжительности жизни галактики, так что обнаружить ее — уникальная возможность.
Исследователи обнаружили, что газы «глаза» движутся к центру IC 2163 со скоростью 100 километров в секунду, прежде чем разбиться, как волна на берегу, становясь более хаотичными и замедляясь, когда они движутся к центру галактики. Замедление приводит к тому, что газ накапливается и сжимается, что может подготовить почву для формирования новых звезд.
Галактика-турист
Это изображение космического телескопа Хаббла галактики NGC 1277. (Изображение предоставлено: НАСА, ЕКА и М. Бизли (Институт астрофизики Канарских островов))
Галактика NGC 1277 любит путешествовать. Эта галактика, о которой впервые сообщили в 2018 году, находится всего в 240 миллионах световых лет от Земли. Она не образовывала новые звезды около 10 миллиардов лет, что делает ее мертвой галактикой.
Астрономы считают, что NGC 1277 отстает в развитии, потому что она движется слишком быстро, чтобы поглотить другие галактики своим гравитационным притяжением. Она путешествует в космосе со скоростью около 3,2 миллиона км / ч. Без газа и пыли от инопланетных галактик NGC 1277 больше не образует звезд. Некоторые астрономы считают, что большинство галактик начинали как NGC 1277, создавая спираль и другие формы только в результате более поздних слияний друг с другом.
Примечания
- Sky and Telescope, New Stars in a Galaxy’s Wake, 28 September 2007
- NASA, ‘Orphan’ Stars Found in Long Galaxy Tail, 09.20.07
- arXiv, H-alpha tail, intracluster HII regions and star-formation: ESO137-001 in Abell 3627, Fri, 8 June 2007 17:50:48 GMT
- Universe Today, Galaxy Leaves New Stars Behind in its Death Plunge ; September 20th, 2007
- Astronomy Knowledge Base, , UOttawa
- SEDS, The Large Magellanic Cloud, LMC
- SEDS, The Small Magellanic Cloud, SMC
- UPI, Black hole found in Omega Centauri ,April 10, 2008 at 2:07 PM
- Dave Snyder. University Lowbrow Astronomers Naked Eye Observer’s Guide. Umich.edu (February, 2000). Проверено 1 ноября 2008.
- ↑ Farthest Naked Eye Object. Uitti.net. Проверено 1 ноября 2008.
- SEDS, Messier 33
- SEDS, Messier 81
- Astrophys. J., 55, 406—410 (1922)
- Astrophysical Journal, Centennial Issue, Vol. 525C, p. 569 ; Baade & Minkowski’s Identification of Radio Sources ; 1999ApJ…525C.569B
- SEDS, Seyfert Galaxies
- Astronomy and Astrophysics, v.357, p.L45-L48 (2000) III Zw 2, the first superluminal jet in a Seyfert galaxy ; 2000A&A…357L..45B
- SEDS, Lord Rosse’s drawings of M51, his «Question Mark» «Spiral Nebula»
- Sub-parsec-scale structure and evolution in Centaurus AIntroduction ; Tue November 26 15:27:29 PST 1996
- ↑ The 2006 Giant Flare in PKS 2155—304 and Unidentified TeV Sources
- ↑ Julie McEnery. Time Variability of the TeV Gamma-Ray Emission from Markarian 421. Iac.es. Проверено 1 ноября 2008.
- bNet, Ablaze from afar: astronomers may have identified the most distant «blazar» yet, Sept, 2004
- arXiv, Q0906+6930: The Highest-Redshift Blazar, 9 June 2004
- Monthly Notices of the Royal Astronomical Society, Volume 384, Issue 3, pp. 875—885 ; Optical spectroscopy of Arp220: the star formation history of the closest ULIRG ; 03/2008 ; 2008MNRAS.384..875R
- Chandra Proposal ID #01700041 ; ACIS Imaging of the Starburst Galaxy M82 ; 09/1999 ; 1999cxo..prop..362M
- ; 2001 ; ISBN 3-540-41472-X
Эволюция галактик
Образование галактик рассматривают как естественный этап эволюции Вселенной, происходящий под действием гравитационных сил. Как предполагают ученые, около 14 млрд. лет назад произошел большой взрыв, после которого Вселенная везде была одинаковой. Затем частицы пыли и газа начали группироваться, объединяться, сталкиваться и таким образом появлялись сгустки, которые позднее превращались в галактики. Многообразие форм галактик связано с разнообразием начальных условий образования галактик. Скопление газообразного водорода в пределах таких сгустков стало первыми звездами.
С момента зарождении галактика начинает сжиматься. Сжатие галактики длится около 3 млрд лет. За это время происходит превращение газового облака в звездную систему. Звезды образуются путем гравитационного сжатия облаков газа. Когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций, рождается звезда. В недрах массивных звезд происходит термоядерный синтез химических элементов тяжелее гелия. Эти элементы попадают в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образуются при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогащают первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые и состоят из водорода, гелия и очень малой примеси тяжелых элементов. В звездах второго поколения примесь тяжелых элементов более заметная, так как они образуются из уже обогащенного тяжелыми элементами первичного газа.
Процесс рождения звезд идет при продолжающемся сжатии галактики, поэтому формирование звезд происходит все ближе к центру системы, и чем ближе к центру, тем больше должно быть в звездах тяжелых элементов. Этот вывод хорошо согласуется с данными о содержании химических элементов в звездах гало нашей Галактики и эллиптических галактик. Во вращающейся галактике звезды будущего гало образуются на более ранней стадии сжатия, когда вращение еще не повлияло на общую форму галактики. Свидетельствами этой эпохи в нашей Галактике являются шаровые звездные скопления.
Когда прекращается сжатие протогалактики, кинетическая энергия образовавшихся звезд диска равна энергии коллективного гравитационного взаимодействия. В это время, создаются условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения. К ним относится наше Солнце.
Возраст галактик равен примерно возрасту Вселенной. Одним из секретов астрономии остаётся вопрос о том, что из себя представляют ядра галактик. Очень важным открытием явилось то, что некоторые ядра галактик активны. Это открытие было неожиданным. Раньше считалось, что ядро галактики – это не больше чем скопление сотен миллионов звёзд. Оказалось, что и оптическое и радиоизлучение некоторых галактических ядер может меняться за несколько месяцев. Это означает, что в течение короткого времени из ядер освобождается огромное количество энергии, в сотни раз превышающее то, которое освобождается при вспышке сверхновой. Такие ядра получили название «активных», а процессы, происходящие в них, «активность».
В 1963 году были обнаружены объекты нового типа, находящиеся за приделами нашей галактики. Эти объекты имеют звездообразный вид. Со временем выяснили, что их светимость во много десятков раз превосходит светимость галактик! Самое удивительное то, что их яркость меняется. Мощность их излучения в тысячи раз превосходит мощность излучения активных ядер. Эти объекты назвали квазарами . Сейчас считается, что ядра некоторых галактик представляют собой квазары.
Проблемы современных моделей рождения и эволюции Вселенной
Многие теории, касающиеся Вселенной в последнее время сталкиваются с проблемами, как теоретического, так и, что более важно, наблюдательного характера:
- Вопрос о форме Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска трёхмерного пространственного сечения Вселенной, то есть такой фигуры, которая наилучшим образом представляет пространственный аспект Вселенной.
- Неизвестно, является ли Вселенная глобально пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах.
- Также неизвестно, является ли Вселенная односвязной или многосвязной. Согласно стандартной модели расширения, Вселенная не имеет пространственных границ, но может быть пространственно конечна.
- Существуют предположения, что Вселенная изначально родилась вращающейся. Классическим представлением о зарождении является идея об изотропности Большого взрыва, то есть о распространении энергии одинаково во все стороны. Однако появилась и получила некоторое подтверждение конкурирующая гипотеза о наличии изначального момента вращения Вселенной.
Видео
Источники
- https://ru.wikipedia.org/wiki/Вселеннаяhttps://spacegid.com/kak-poyavilas-vselennaya.htmlhttps://cemicvet.mediasole.ru/chto_bylo_do_poyavleniya_vselennoyhttps://v-kosmose.com/kosmos/https://zaochnik-com.ru/blog/teorii-proisxozhdeniya-i-modeli-vselennoj/http://www.furfur.me/furfur/culture/culture/168729-vselennayahttps://fb.ru/article/266573/kak-obrazovalas-vselennaya-teorii-obrazovaniya-vselennoy
Тушение галактики
Звездообразование в нынешних «мертвых» галактиках расплылось миллиарды лет назад.
Одно наблюдение (см. Выше), которое должно быть объяснено с помощью успешной теории эволюции галактик, — это наличие двух разных популяций галактик на диаграмме цвет-величина галактики. Большинство галактик имеют тенденцию попадать в два разных места на этой диаграмме: «красную последовательность» и «синее облако». Галактики красной последовательности, как правило, не являются звездообразующими эллиптическими галактиками с небольшим количеством газа и пыли, в то время как галактики с синими облаками обычно представляют собой пыльные спиральные галактики, образующие звезды.
Как описано в предыдущих разделах, галактики имеют тенденцию эволюционировать от спиральной к эллиптической структуре посредством слияний. Однако текущая скорость слияния галактик не объясняет, как все галактики перемещаются из «синего облака» в «красную последовательность». Это также не объясняет, как прекращается звездообразование в галактиках. Следовательно, теории эволюции галактик должны быть в состоянии объяснить, как в галактиках происходит звездообразование. Это явление называется «тушением» галактик.
Форма звезд из холодного газа (см. также Закон Кенникатта-Шмидта ), поэтому галактика гаснет, когда в ней больше нет холодного газа. Однако считается, что гашение происходит относительно быстро (в пределах 1 миллиарда лет), что намного меньше времени, которое потребуется галактике, чтобы просто израсходовать свой резервуар холодного газа. В моделях эволюции галактик это объясняется гипотезой о других физических механизмах, которые устраняют или перекрывают подачу холодного газа в галактику. Эти механизмы можно в общих чертах разделить на две категории: (1) механизмы превентивной обратной связи, которые не позволяют холодному газу проникать в галактику или не дают ему образовывать звезды, и (2) механизмы выталкивающей обратной связи, которые удаляют газ так, чтобы он не мог образовывать звезды.
Один теоретически известный превентивный механизм, называемый «удушение», не позволяет холодному газу проникать в галактику. Удушение, вероятно, является основным механизмом подавления звездообразования в близлежащих галактиках с малой массой. Точное физическое объяснение удушения до сих пор неизвестно, но, возможно, оно связано с взаимодействием галактики с другими галактиками. Когда галактика попадает в скопление галактик, гравитационное взаимодействие с другими галактиками может задушить ее, препятствуя аккреции большего количества газа. Для галактик с массивным ореолы темной материи, еще один превентивный механизм, называемый «вириальным шок нагревание »также может препятствовать тому, чтобы газ стал достаточно холодным, чтобы образовались звезды.
Процессы выброса, которые вытесняют холодный газ из галактик, могут объяснить, как гаснут более массивные галактики. Один из механизмов выброса вызван сверхмассивными черными дырами, обнаруженными в центрах галактик. Моделирование показало, что газ, аккрецирующий на сверхмассивных черных дырах в центрах галактик, производит высокоэнергетические струи; высвобожденная энергия может вытеснить достаточно холодного газа, чтобы погасить звездообразование.
Наш собственный Млечный Путь и соседняя Галактика Андромеды в настоящее время, похоже, претерпевают переход от голубых звездообразующих галактик к пассивным красным галактикам.
Галактические вычисления
Эдвин Хаббл является основоположником галактических исследований. Он первый, кому удалось определить, как можно вычислить точное расстояние до галактики. В своих исследованиях он опирался на метод пульсирующих звезд, которые более известны как цефеиды. Ученый смог заметить связь между периодом, который нужен для завершения одной пульсации яркости, и той энергией, которую выделяет звезда. Результаты его исследований стали серьезным прорывом в области галактических исследований. Помимо этого, он обнаружил, что есть корреляция между красным спектром, излучаемым галактикой, и расстоянием до нее (постоянная Хаббла).
В наше время астрономы могут измерять расстояние и скорости галактики посредством измерения количества красного смещения в спектре. Известно, что все галактики Вселенной движутся друг от друга. Чем дальше галактика находится от Земли, тем больше ее скорость движения.
Чтобы визуализировать данную теорию, достаточно представить себя за рулем авто, который двигается на скорости 50 км в час. Перед Вами едет авто быстрее на 50 км в час, что говорит о том, что скорость его передвижения составляет 100 км в час. Перед ним есть еще одно авто, которое движется быстрее еще на 50 км в час. Несмотря на то что скорость всех 3 машин будет разной на 50 км в час, первый автомобиль на самом деле движется от Вас на 100 км в час быстрее. Поскольку красный спектр говорит о скорости движения галактики от нас, получается следующее: чем больше красное смещение, тем, соответственно, галактика быстрее движется и тем большее ее расстояние от нас.
Сейчас мы располагаем новыми инструментами, помогающими ученым в поисках новых галактик. Благодаря космическому телескопу Хаббла ученым удалось увидеть то, о чем раньше оставалось только мечтать. Высокая мощность этого телескопа обеспечивает хорошую видимость даже мелких деталей в ближних галактиках и позволяет изучать более дальние, которые никому еще не были известны. В настоящее время новые инструменты наблюдения космоса находятся в стадии разработки, а в скором будущем они помогут получить более глубокое понимание структуры Вселенной.
Теория Большого взрыва – не самая удобная, но зато все объясняющая. Почти все
Поскольку Вселенная (отныне!) уже не была неизменной, она должна была каким-то образом и появится.
Естественно, вскоре стали появляться теории ее появления. Они основывались на том, что если бы мы повернули время вспять, то галактики стали бы сжиматься, а температура Вселенной повышаться, пока она не сжалась бы в сингулярность.
Физики стали разрабатывать математическое основание процессов возникновения Вселенной из точки. Так, в 1930 году все тот же Эдвин Хаббл предложил теорию, впоследствии названную теорией Большого Взрыва. Она основывалась на том, что Вселенная возникла в результате взрыва из сингулярности.
В результате последующего расширения вселенной, её разрежения и как следствие – остывания первичного горячего газа, в итоге и появились звезды, а также галактики.
Это теория хорошо согласовалась с астрономическими наблюдениями.
- Во-первых, галактики действительно “разбегались” именно так, как предсказывала теория.
- Во-вторых, в 1964 году было обнаружено пронизывающее всю Вселенную так называемое реликтовое микроволновое излучение, которое должно было остаться после охлаждения первичного газа.
- В-третьих, в результате Большого Взрыва должно было появиться огромное количество водорода, дейтерия, гелия и лития, которое мы можем наблюдать сегодня.
Не удивительно, что теория Большого Взрыва стала считаться классической теорией формирования Вселенной.
Как выглядела Вселенная когда в ней ещё не действовали законы физики? Возможно что вот так красиво.
Однако все же были некоторые моменты, которые теория Большого Взрыва объяснить не могла. Вот основные из этих вопросов:
- Где именно находится та самая точка, из которой появилась наша Вселенная?
- Как именно из сингулярности могло появиться столь огромное количество материи и энергии?
- Если бы после взрыва просто расширялся и остывал газ, из которого и сформировались звезды и галактики, то Вселенная должна была бы быть однородной. Но в реальности галактики формируют скопления – галактические кластеры, которые в свою очередь входят в еще более глобальные структуры. Даже анализ реликтового излучения показал, что еще на стадии, когда во Вселенной не было ни звезд, ни галактик, неоднородности первичного газа уже существовали.
- И, наконец, все законы физики, которыми мы описываем окружающий нас мир, просто не работают при попытке описать поведение материи и энергии в первичной сингулярности. Поэтому мы можем описывать лишь то, что произошло уже после Большого Взрыва, а не сам Большой Взрыв или особенно то, что было до него.
Конечно, кто-то может возразить, что поскольку пространство и время зародились в момент Большого Взрыва, то говорить о периоде ДО Большого Взрыва бессмысленно, ведь ДО просто ничего не было.
Однако такое заявление не совсем логично, ведь должно же было быть ЧТО-ТО, что вызвало сам Большой Взрыв. Соответственно, было разработано несколько теорий, пытающихся объяснить загадку появления Вселенной.
Последние исследования
Астрофизики из США рассчитали, каким должно быть количество небольших чёрных дыр, массой от нескольких солнечных до нескольких сот масс Солнца в Млечном Пути. По их расчётам получилось, что в нашей Галактике их примерно сто миллионов. Это заметно больше, чем ожидали исследователи, и означает, что ближайшая чёрная дыра может находиться сравнительно близко к Солнечной системе. Соответствующая статья опубликована в Monthly Notices of the Royal Astronomical Society.
Исследователи взяли известное из астрономических наблюдений распределение видимых звёзд по массам. Рассчитав, какая часть из них массивнее Солнца настолько, что в конце своей эволюции они схлопываются в чёрную дыру, авторы работы обнаружили, что хотя такое событие само по себе довольно редко, однако из-за многочисленности звёзд встречается чаще, чем они предполагали изначально. На Млечный Путь, в котором находится наша система, должно приходиться порядка 100 миллионов чёрных дыр звёздных масс, чёрных дыр средних масс, а также сверхмассивные в этой работе не затрагивались.
Астрономы также отмечают, что для нашей Галактики наиболее типичная масса чёрной дыры звёздных масс сравнительно невелика, как правило, не выше 30 масс Солнца. В карликовых галактиках-спутниках, окружающих нашу, их средняя масса ближе к сотне солнечных. Причина – в малом количестве тяжелых элементов в карликовых галактиках. Без тяжелых элементов от светила исходит меньше звёздного ветра (так называют поток заряженных частиц, выбрасываемых звездой). Не теряя массу на звёздный ветер, массивные солнца из карликовых галактик сохраняют больше своего вещества до конца жизненного цикла, образуя в итоге более массивные чёрные дыры.
Источники
- https://ru.wikipedia.org/wiki/Возникновение_и_эволюция_галактикhttps://ru.wikipedia.org/wiki/Галактикаhttp://www.vseznaika.org/kosmos/chto-takoe-galaktika/http://v-kosmose.com/galaktiki-vselennoi/mlechnyiy-put/https://life.ru/t/наука/1033765/uchionyie_v_nashiei_ghalaktikie_100_millionov_chiornykh_dyr
Доказательства в истории
Египетские иероглифы, найденные в храме Сети I в Абидосе имеют очень странный вид. Они изображают что-то похожее на вертолет, дирижабль и подводную лодку. Эта находка вызвала много споров среди египтологов и археологов, которые до сих пор так и не нашли научного объяснения.
На картине, написанной Доменико Гирландайо в XV веке, изображена Дева Мария, а позади нее можно увидеть человека, разглядывающего в небе какой-то светящийся шар, похожий на летающий корабль.
Еще один артефакт древности, не дающий покоя ученым, — Энигмалит. Это камень, содержащий встроенный элемент, назначение которого непонятно, а по виду он напоминает вилку от электроприборов. Примерный возраст этого камня — 100 000 лет.
Галактика без темной материи?!
В 2018 году космический телескоп Хаббла заметил нечто, чего раньше никогда не видели: галактику почти без темной материи.
Это открытие сразу озадачило ученых. Темная материя — это таинственная форма материи, которая взаимодействует с гравитацией, но не со светом. Она составляет больше вещества во Вселенной, чем материя, которую мы можем видеть, поэтому поиск галактики без нее был, по меньшей мере, странным.
Год спустя научные исследователи раскрыли тайну: галактика, NGC 1052-DF2, не была на расстоянии 65 миллионов световых лет, как первоначально предполагалось. Исследователи сообщили 14 марта 2019 года в журнале «Ежемесячные уведомления Королевского астрономического общества», что расстояние до него составляет всего около 42 миллионов световых лет. Это изменение расстояния полностью меняет расчеты для массы галактики. Оказывается, в конце концов, это довольно нормальная галактика.
Галактика-вертушка
Мессье 83 — это большая фотогеничная спиральная галактика с центром в форме стержня, похожая на Млечный путь. Он находится на расстоянии 15 миллионов световых лет в созвездии Гидры. Мессье 83 странная в двух отношениях. Во-первых, в ее центре, по-видимому, имеется двойное ядро - возможно, две сверхмассивные черные дыры, удерживающих галактику вместе, или, возможно, эффект изогнутого диска звезд, вращающегося вокруг одной центральной черной дыры. Во-вторых, Мессье 83 – место рождения сверхновых. Астрономы непосредственно наблюдали шесть из этих звездных взрывов в галактике, а также остатки еще 300. Это ставит Мессье 83 на второе место для сверхновых звезд, так как только галактика NGC 6946 создала девять наблюдаемых сверхновых.
Бесконечные пузыри
Говорить о чем-то за пределами сферы Хаббла не совсем верно, так как это по-прежнему имеет идентичное устройство Метагалактики. «Неизвестность» имеет те же физические законы Вселенной и константы. Есть версия, что Большой взрыв вызвал появление пузырей в структуре пространства.
Сразу после него, до момента начала инфляции Вселенной, возникла своего рода «космическая пена», существующая как скопление «пузырей». Один из объектов этого вещества внезапно расширился, со временем став Вселенной, известной сегодня.
Но что получилось из других пузырей? Александр Кашлинский — глава команды НАСА, организации, которая обнаружила «темную энергию», — заявил: «Если отдалиться на достаточно большое расстояние, то можно увидеть структуру, которая находится вне пузыря, за пределами Вселенной. Эти структуры должны вызвать движение».
Таким образом, «темная энергия» воспринимается как первое свидетельство существования другой Вселенной, или даже «Мультивселенной».
Каждый пузырь — это область, которая перестала растягиваться вместе с остальной частью пространства. Она сформировала свою собственную Вселенную со своими особыми законами.
В этом сценарии пространство бесконечно, и каждый пузырь также не имеет границ. Даже если можно нарушить рубеж одного из них, пространство между ними все еще расширяется. Со временем будет невозможно добраться до следующего пузыря. Такое явление до сих пор остается одной из величайших тайн космоса.
Галактика-головастик
Ядро компактной группы 98 Хиксона состоит из двух «пятен» в центре изображения. (Фото предоставлено Н. Брошем / Университет Тель-Авива)
Через триста миллионов световых лет огромный головастик плывет сквозь пространство. Эта «головастая» галактика имеет хвост длиной 500000 световых лет и в 10 раз длиннее Млечного пути.
Что создало эту странную галактическую форму? О космическом столкновении исследователи сообщили в 2018 году в журнале «Ежемесячные уведомления Королевского астрономического общества». Две дисковые галактики растянули галактику меньшего размера, сгруппировав звезды на одном конце в «голову» и оставив другие вытекать в длинный «хвост». Это будет длиться только в течение ограниченного времени. Через несколько миллиардов лет галактики сойдутся вместе с некоторыми другими в окрестности, чтобы создать одну единую галактику.
Сигнал «WoW!»
Исследователями Университета штата Огайо 15 августа 1977 года во время работы на радиотелескопе «Большое ухо» был пойман сильный и странный сигнал, источник которого находился за пределами Солнечной системы. Для оператора доктора Джерри Эймана звук оказался столь неожиданным, что он обвел соответствующую ему группу символов на распечатке и подписал сбоку «Wow!» («Ого-го!»).
Существует множество теорий и предполагаемых расшифровок этих звуков, но ни одна так и не была признана достоверной. Впоследствии ученые не раз пытались поймать подобный радиосигнал, но сколько бы долго они ни слушали космос, этого сделать не удалось.
Теория струн
Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.
Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.
Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.
Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.
Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.
Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.