Время жизни звезд

Содержание

У Вселенной еще есть много загадок, которые предстоит разгадать. К счастью, есть кое-что о нашем Космосе, которое мы знаем. И один из них — астрономический процесс, в результате которого образуются звезды.

Эти звезды — ключ ко Вселенной. Организованные в галактики, звезды являются двигателем всего, что происходит в Космосе. С нашей точки зрения звезды представляют собой крошечные яркие пятна, а на самом деле они представляют собой огромные сферы раскаленной плазмы на расстояниях в сотни или тысячи световых лет.

Подсчитано, что только в Млечном Пути может быть больше, чем 400 000 миллионов звезд. А если учесть, что наша галактика — всего лишь еще одна из 2 миллионов миллионов, которые могут быть во Вселенной, просто невозможно представить, сколько звезд «плавает» через Космос.

Но откуда они появляются? Как они образованы? Почему они достигают таких высоких температур? Откуда взялась составляющая их материя? Рождение звезды — одно из самых удивительных событий во Вселенной; и в сегодняшней статье мы увидим, как это происходит.

Рекомендуем прочитать: «10 крупнейших звезд Вселенной»

Яркость, светимость и радиус

Созвездие Орион

Когда вы смотрите на ночное небо, вы видите, что некоторые звезды ярче других, как показано на этом изображении Ориона.

Два фактора определяют яркость звезды:

  • светимость – сколько энергии он выделяет в данный момент времени
  • расстояние – насколько далеко от нас

Прожектор излучает больше света, чем фонарик. То есть прожектор светится ярче. Однако если этот прожектор находится на расстоянии 8 километров от вас, он не будет таким ярким, поскольку интенсивность света уменьшается с увеличением квадрата расстояния. Прожектор в 8 километров от вас может выглядеть таким же ярким, как фонарик в 15 сантиметрах от вас. То же самое относится и к звездам.

Астрономы (профессиональные или любители) могут измерять яркость звезды (количество испускаемого ею света) с помощью фотометра или прибора с зарядовой связью (ПЗС) на конце телескопа. Если они знают яркость звезды и расстояние до звезды, они могут рассчитать светимость звезды:

Светимость также связана с размером звезды. Чем больше звезда, тем больше энергии она излучает и тем ярче. Это можно увидеть и на угольном гриле. Три светящихся красных угольных брикета производят больше энергии, чем один светящийся красный угольный брикет при той же температуре. Аналогично, если две звезды имеют одинаковую температуру, но разные размеры, то большая звезда будет более яркой, чем маленькая.

Эволюция звезд различной массы

Стоит отметить, что звездные тела имеют разные характеристики.

Низкая масса

Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.

К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода. Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.

Средняя масса

Как оказалось, звёздная эволюция при средней массе тела проходит по следующему пути.Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.

Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.

Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.

Массивные звезды

А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Эволюция нормальных звезд

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда –  желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Процесс образования нейтронной звезды

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Главная последовательность

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Красный гигант

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Звезды и скрытая масса Вселенной

Современные астрономические наблюдения указывают на то, что видимое вещество, а именно все звезды, планеты, межзвездные газы составляют только 1/6 часть массы вещества во Вселенной.

Помимо этого есть невидимое темное вещество или материя, количество которой в 5 раз больше привычного всем вещества.

Во Вселенной находится скрытая масса, которая увеличивает скорость вращения звезд при их удалении от центра галактик.

Кроме того, наблюдается такое явление как гравитационное линзирование.

Поэтому можно узнавать реальную массу галактик и их скоплений, которая оказывается гораздо больше чем то, что можно видеть. И эта масса отлично вписывается в модель с темной материей.

Природа темной материи одна из самых интересных и захватывающих загадок, которая стоит перед современной астрономией.

Молекулярные облака

Начнем с рождения звезды. Представьте себе огромное облако холодного молекулярного газа, которое может спокойно существовать во Вселенной без всяких изменений. Но вдруг недалеко от него взрывается сверхновая или же оно наталкивается на другое облако. Из-за такого толчка активируется процесс разрушения. Оно делится на небольшие части, каждая их которых втягивается в себя. Как вы уже поняли, все эти кучки готовятся стать звездами. Гравитация накаляет температуру, а сохраненный импульс поддерживает процесс вращения. Нижняя схема наглядно демонстрирует цикл звезд (жизнь, этапы развития, варианты трансформации и смерть небесного тела с фото).

Новые и сверхновые звезды

Иногда на небе ученые наблюдают резкую сильную вспышку, которая не имеет никакого отношения к мерцанию переменных светил. Так образуются новые и сверхновые звезды. Новые получили свое название, потому что раньше считалось, что на месте появления такого объекта первоначально была пустота. В ХХ веке, когда проводилось регулярное фотографирование небосвода, установили, что на месте вспышки «новых» светил все-таки была небольшая слабозаметная звездочка, но в определенный момент она почему-то резко увеличила свое свечение.

Новые звезды вспыхивают раз в несколько лет. И даже, несмотря на то, что количество излучаемого света увеличивается в десятки тысяч раз, заметить их невооруженных взглядом невозможно, настолько далеко они расположены.

Вспышка сверхновой звезды – куда более масштабное явление. Энергия, которая образуется при взрыве, сопоставима с солнечной, которую оно излучает за несколько миллиардов лет. Сверхновые звезды вспыхивают еще реже. Данное явление происходит как в нашей Галактике, так и за ее пределами. В 1054 г в китайских и японских хрониках в Галактике был отмечен взрыв сверхновой звезды, который видели даже в дневное время. В 1987 году с помощью современной аппаратуры удалось наблюдать вспышку сверхновой от начала до конца. Произошла она в галактике Большое Магелланово Облако.

Почему же вспыхивают новые и сверхновые звезды? Ответ на этот вопрос удалось найти лишь в середине ХХ века. Во время очередной вспышки, специалисты заметили, что произошел взрыв одной звезды из двойной системы. В этой паре одна звезда похожа на Солнце, относится в главной последовательности. Вторая – очень плотный белый карлик, его диаметр в 100 раз меньше Солнца. Звезды находятся очень близко друг к другу. В результате приливных сил вещество из желтого светила «переливалось» на карлика. Там оно попало в условия высоких температур и давления, что запустило термоядерные реакции. На Солнце такие реакции происходят в недрах и являются относительно спокойными. В системе звезд это спровоцировало взрыв, в результате которого оболочка белого карлика начала сильно расширяться, а светимость двойной системы многократно увеличилась. Однако плотность оболочки была настолько низкой, что она никак не повредила желтой звезде. Сейчас светило продолжает «снабжать» карлика веществом и вполне вероятно, что через несколько сотен лет произойдет еще одна вспышка новой звезды на небе.

Со сверхновыми дела обстоят немного иначе. В созвездии Тельца учеными было обнаружено светящееся газовое облако – Крабовидная туманность. Сейчас оно расширяется и специалистам удается определить скорость этого расширения. Если в течение определенного времени скорость не менялась, то примерно 1000 лет назад, вещество из туманности находилось в одной точке – в том месте, где произошла вспышка сверхновой звезды. Так ученые определили, что Крабовидная туманность – это остатки после вспышки. Позже были обнаружены еще аналогичные туманности. Самое интересное, что в центре Крабовидной туманности находится звезда пульсар. Ее вещество гораздо плотнее, чем у белых карликов. Ели очень массивные светила в конце своей жизни теряют устойчивость, то это становится причиной взрыва сверхновой звезды.

Наблюдать за звездами увлекательно и познавательно. Даже не используя никакой современной аппаратуры, можно для себя сделать много удивительных открытий. На небосводе регулярно появляются новые объекты. Только в нашей Галактике Млечный Путь ежегодно рождается около пяти новых звезд.

Процесс изучения и схема эволюции звезд

Весь процесс познания звезд можно условно разделить на несколько этапов. В самом начале следует определить расстояние до звезды. Информация о том, как далеко от нас находится звезда, как долго идет от нее свет, дает представление о том, что происходило со светилом на протяжении всего этого времени. После того, как человек научился измерять расстояние до далеких звезд, стало ясно, что звезды – это то же самые солнца, только разных размеров и с разной судьбой. Зная расстояние до звезды, по уровню света и количеству излучаемой энергии можно проследить процесс термоядерного синтеза звезды.

Вслед за определением расстояния до звезды можно с помощью спектрального анализа рассчитать химический состав светила и узнать его структуру и возраст. Благодаря появлению спектрографа у ученых проявилась возможность изучить природу света звезд. Этим прибором можно определить и измерить газовый состав звездного вещества, которым обладает звезда на разных этапах своего существования.

Звездное вещество состоит из тех же химических элементов (вплоть до железа), что и наша планета. Разница только в количестве тех или иных элементов и в процессах, происходящих на Солнце и внутри земной тверди. Это и отличает звезды от других объектов во Вселенной. Происхождение звезд следует также рассматривать в контексте другой физической дисциплины – квантовой механики. По этой теории, материя, которая определяет звездное вещество, состоит из постоянно делящихся атомов и элементарных частиц, создающих свой микромир. В этом свете вызывает интерес структура, состав, строение и эволюция звезд. Как выяснилось, основная масса нашей звезды и многих других звезд приходится всего на два элемента – водород и гелий. Теоретическая модель, описывающая строение звезды, позволит понять их строение и главное отличие от других космических объектов.

Главная особенность заключается в том, что многие объекты во Вселенной имеют определенный размер и форму, тогда как звезда может по мере своего развития менять размер. Горячий газ представляет собой соединение атомов, слабо связанных друг с другом. Через миллионы лет после формирования звезды начинается остывание поверхностного слоя звездного вещества. Большую часть своей энергии звезда отдает в космическое пространство, уменьшаясь или увеличиваясь в размерах. Передача тепла и энергии происходит из внутренних областей звезды к поверхности, оказывая влияние на интенсивность излучения. Другими словами, одна и та же звезда в разные периоды своего существования выглядит по-разному. Термоядерные процессы на основе реакций водородного цикла способствуют превращению легких атомов водорода в более тяжелые элементы – гелий и углерод. По мнению астрофизиков и ученых-ядерщиков, подобная термоядерная реакция является самой эффективной по количеству выделяемого тепла.

Почему же термоядерный синтез ядра не заканчивается взрывом такого реактора? Все дело в том, что силы гравитационного поля в нем могут удерживать звездное вещество в пределах стабилизированного объема. Из этого можно сделать однозначный вывод: любая звезда представляет собой массивное тело, которое сохраняет свои размеры благодаря балансу между силами гравитации и энергией термоядерных реакций. Результатом такой идеальной природной модели является источник тепла, способный работать длительное время. Предполагается, что первые формы жизни на Земле появились 3 млрд. лет назад. Солнце в те далекие времена грело нашу планету так же, как и сейчас. Следовательно, наша звезда мало чем изменилась, несмотря на то, что масштабы излучаемого тепла и солнечной энергии колоссальны – более 3-4 млн. тонн каждую секунду.

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории – эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты – это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

Типы звёзд во Вселенной

Разобрав основные аспекты, касательно звёзд и их свечения, можно перейти к из классификации и типологии. На звёздном небе различается несколько типов космических тел. Эта типология зависит от формы и стадии их развития:

Протозвезда. Это то, что человек может наблюдать до появления полноценной звезды. Это выглядит, как скопление газа, который будет эволюционировать ещё не одну тысячу лет. После того, как гравитация наберёт силу и разрушит этот газовый сгусток, образуется сильное свечение, основанное на выбросе огромного количества энергии;

Типаж Т Тельца. Этот момент наступает по окончанию формирования протозвезды. Такие звёздные образования не наделены достаточной температурой и свечением, то есть процесс ядерного синтеза не может быть активирован. Такие звёзды заметные массивные пятна, рентгеновские вспышки, а также мощные порывы ветров;

Главная последовательность звёзд. Такие звёзды специализируются на выработке гелия из водорода. Это приводит к огромному энергетическому всплеску. Гравитационное поле заставляет космическое тело сжиматься, а синтез выталкивает его наружу. За счёт уравновешивания звезда может сохранить форму сферы;

Красные гиганты. Звезда, которая не может излучать внешнего давления из-за недостаточного количества тепла. Космическое тело сжимается, а образовавшееся вокруг облачко воспламеняется. Эти звёзды гораздо крупнее всех предыдущих, а процесс горения гелия происходит после исчезновения водорода в составе.

Красный карлик. К этому виду относятся звёзды главной последовательности, но обладающие менее высокой температурой (если сравнивать с Солнцем). Они гораздо дольше существуют за счёт более экономичного расходования энергии;

Нейтронные звёзды. Эти звёзды практически в два раза больше Солнца. Это не звезда, а ядро белого гиганта. Он представляет из себя скопление нейтронов, которые при взрыве образуют чёрную дыру;

Сверхгигант. Такие звёзды имеют большую массу, которая значительно сокращает их жизненный цикл. Это связана с колоссальным расходованием топлива, поэтому через миллионы лет они погибают, как сверхновые;

Коричневый гигант. Это космическое тело, которое имеет слишком большие габариты, чтобы называться планетой, но недостаточные, чтобы быть звездой. Процесс формирования не отличается от обычных звёзд, но при этом им не хватает температуры, для начала ядерного синтеза.

Двойные звёзды. Это скорее звёздная система, чем звёздный объект. Они используются для вычисления массы отдельных участков.

Это то, что касается типов звёзд и их основных характеристик.

Яркость и светимость

Различаются они и по таким признакам, как блеск, яркость. То, насколько яркой окажется наблюдаемая с поверхности Земли звезда, зависит не только от ее светимости, но и от удаленности от нашей планеты. Учитывая расстояние до Земли, звезды могут обладать совершенно различной яркостью. Этот показатель колеблется от одной десятитысячной блеска Солнца до яркости, сопоставимой более чем с миллионом Солнц.

Большая часть звезд находится на нижнем отрезке этого спектра, являясь тусклыми. Во многих отношениях Солнце является среднестатистической, типичной звездой. Однако, по сравнению с другими, оно обладает гораздо большей яркостью. Большое количество тусклых звезд могут наблюдаться даже невооруженным глазом. Причина, по которой звезды отличаются по яркости, заключается в их массе. Цвет, блеск и изменение яркости во времени определяется количеством вещества.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: