Что такое темная материя и из чего она состоит?

Что если не найдут?

Долго ли будет вестись эта борьба за поиск вимпов? Точно неизвестно. Неизвестно даже, действительно ли они существуют, и тем более никто не может гарантировать, что они достаточно сильно взаимодействуют с ядрами привычных нам веществ. Чувствительность ксеноновых детекторов непрерывно увеличивается, и рано или поздно они достигнут такого уровня, что начнут «видеть» поток нейтрино, идущих из космоса. Тогда они заполнятся шумом, на фоне которого поймать вимпы будет невозможно. Но пока мы далеки от этого предела, и учёные настроены решительно.

Многие из них сходятся во мнении, что окончательный ответ на вопрос, существуют ли частицы тёмной материи, как их предсказывают простые теории суперсимметрии, мы получим уже в ближайшие 5–10 лет. Правда, если даже мы их обнаружим одним из методов, однозначно утверждать, что именно вимпы составляют большую часть тёмной материи, можно будет только после того, как этот вывод будет подтверждён и другими методами тоже.

Если же вимпы так и не обнаружат, то хотя это и может разочаровать кого-то, наука на этом, конечно же, не остановится. Учёные просто переключатся на другие гипотезы и исследуют более внимательно уже их. Так, перебирая предположения одно за другим, мы рано или поздно разгадаем эту загадку, поставленную перед нами природой.

Подходы и методы исследования частиц темной материи

Из чего состоит Вселенная

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит  в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Распределение энергии во Вселенной

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

Антиматерия и материя

Предположительно, на ранних этапах существования Вселенной симметрия между частицами и античастицами была нарушена. Преобладание частиц оценивается как 1 частица на 1 млрд пар частица-античастица. Почти все античастицы аннигилировали при встрече с частицами, поэтому мы наблюдаем их такое ничтожно малое количество.

Возможно, нарушение симметрии в ранней Вселенной как-то связано с различиями свойств таких короткоживущих частиц как К-мезоны и различиями свойств материи и антиматерии за счет существования трех поколений кварков. Возможно, это как-то связано и с очарованными мезонами — это короткоживущие частицы, которые могут переключаться между двумя состояниями: частицы и античастицы. В июне 2021 года это выяснили ученые из Оксфорда.

Как бы то ни было, весь видимый мир в теории состоит из частиц. По крайней мере, доступный нам мир — это материя. Причем из всего огромного сонма частиц, весь мир состоит всего из трех: две — это нуклоны: протон и нейтрон (нуклонами называются потому что они составляют ядро атома) и во внешней оболочке атома — электроны. Этот феномен — перекос в сторону частиц — получил название Барионная асимметрия Вселенной. Барионы — это тяжелые частицы, к которым относятся также протоны и нейтроны. Кроме того, к барионам относятся и другие тяжелые частицы, состоящие из кварков. И у каждого бариона есть антибарион, который состоит из соответствующих антикварков. Но все эти частицы обладают крайне малым сроком жизни, так что их следует оставить в стороне.

Барионная асимметрия — вопрос исключительно космологии и физики частиц. Если бы барионов и антибарионов было поровну и не было бы никакого различия свойств между материей и антиматерией, то как показал академик Андрей Сахаров в 1967 году, вся Вселенная превратилась бы в излучение — очевидно, этого не произошло. Но может быть материя и антиматерия не были «смешаны» в ранней Вселенной однородно и просто разлетелись в разные стороны — в нашем уголке преобладает материя, а где-то есть области, где антизвезды составляют антигалактики?

Теоретически это возможно, но очень маловероятно, потому что плотность ранней Вселенной была слишком велика, чтобы большие сгустки могли просто так разлететься в разные стороны предварительно не проконтактировав.

И все же антизвезды ищут. Для их обнаружения нужно зарегистрировать ядра антигелия, поскольку только антигелий может гарантировать, что образовался не под воздействием космических лучей — антипротоны и антидейтероны (ядро тяжелого изотопа водорода — дейтерия, состоит из антипротона и антинейтрона) такого гарантировать не могут. А вот ядро антигелия «собраться» случайно практически не может, так что если его зарегистрируют, значит оно прилетело к нам как продукт термоядерных реакций антизвезды.

Постнаука

В 2021 году была опубликована статья, авторы которой создали каталог из 14 кандидатов в антизвезды, проанализировав данные космического телескопа Fermi. Телескоп зарегистрировал именно ядра антигелия.

Дмитрий Казаков, доктор физико-математических наук, Объединенный институт ядерных исследований, Дубна:

«Проблема антисимметрии Вселенной по отношению материи и антиматерии действительно серьезна и давно уже обсуждается в физике высоких энергий, но ясного понимания пока нет. Это связано со свойствами взаимодействия элементарных частиц и, возможно, с новыми частицами.

При изучении спектра космических лучей как раз регистрируют позитроны и антипротоны, их гораздо меньше на общем фоне и их можно регистрировать по сигналу аннигиляции. Так, например, пытаются зарегистрировать сигнал от темной материи. Но специально античастицы не изучают, в этом нет специального интереса. Мы знаем, что все частицы имеют античастицы и у них те же самые свойства. Тут нет загадки кроме того как во Вселенной образовался перекос в сторону частиц».

Футурология

Загадочные частицы: что ученые знают о космических лучах

Применение антиматерии

Антиматерия в медицине

Метод исследования внутренних органов человека или животного под названием позитронно-эмиссионная томография или ПЭТ основан на испускании античастиц электронов — позитронов.

В организм пациента вводится специальное вещество, которое называется радиофармпрепарат. В нем содержится радионуклид, то есть вещество, ядро атома которого нестабильно (от лат. nucleus — ядро), обычно для этого применяются более легкие изотопы четырех элементов — углерода, азота, кислорода и фтора. У этих изотопов на один нейтрон меньше, чем у стабильного атома, и со временем — весьма непродолжительным по бытовым меркам — этот атом распадается с испусканием: протон превращается в нейтрон и испускает позитрон и электронное нейтрино. Оставим в стороне всех, кроме позитрона. Он довольно быстро «остывает» до низкоэнергетического состояния и встречается с электроном в организме пациента. Пара аннигилирует с испусканием двух гамма-квантов, которые летят в противоположных направлениях. Расположенные вокруг пациента детекторы регистрируют эти кванты, и поскольку те летят по одной прямой, оказывается очень нетрудно вычислить то место, откуда они отправились.

При ПЭТ-сканировании предпочитают использовать радиоактивный изотоп Фтор-18, потому что у него довольно продолжительный период полураспада (то есть время за которое половина атомов фтора-18 превратятся в кислород) — 109,8 минут и сравнительно низкая дозовая нагрузка на пациента: образующиеся при аннигиляции гамма-кванты отнюдь не безвредны.

Например, при диагностировании рака пациенту дают небольшое количество глюкозы (фтордезоксиглюкозы — FDG), в которой содержится радионуклид. Поскольку раковые клетки бесконтрольно делятся и нуждаются для этого в энергии, они поглощают глюкозу в больших количествах. Концентрирование глюкозы в раковых клетках приводит к повышенному испусканию позитронов в злокачественной опухоли. То есть делает возможной визуализацию ее с помощью ПЭТ-сканеров.

Позитронно-эмиссионная томография не безвредна — доза облучения при стандартном ПЭТ-сканировании с использованием FDG равна 14 миллизиверт (мЗв). Для сравнения, это суммарное облучение более 4500 часов полета в пассажирском лайнере на стандартной высоте или же 70% безопасной годовой дозы облучения по российским стандартам (или 28% безопасной годовой дозы по стандартам МАГАТЭ). Но аннигиляция позитрон-электронной пары не может нанести увечья или убить.

Антиматерия в энергетике

Использование энергии аннигиляции в военных целях или для энергетики выглядит очень привлекательно, но только при беглом взгляде. Причина все та же — производство антивещества из античастиц — дело не только очень затратное, но и с очень кратким «сроком годности». Для того чтобы вырабатывать энергию для космических полетов или освещения городов, антивещество должно быть не только произведено, но и каким-то образом сохранено и доставлено туда, где оно могло бы быть целенаправлено использованным. Но сейчас не ведутся исследования о возможности промышленного производства, хранения и использования антиматерии.

Дмитрий Казаков:

«Антиатомы по своим свойствам неотличимы от атомов: тот же вес, тот же спектр излучения, те же химические свойства. Получить античастицы нетрудно, мы получаем антиэлектроны или антипротоны для ускорителей, мы рождаем античастицы на коллайдерах, они прилетают к нам из космоса. Но их очень мало по сравнению с обычными частицами и они аннигилируют при встрече с обычными частицами. Получить связанные состояния в виде антиатомов трудно, поскольку нужно одновременно создать антипротон, антинейтрон и антиэлектрон. В ЦЕРНе создали несколько атомов антигелия, но именно несколько, а не несколько граммов как в романе Дэна Брауна. Их трудно создать, трудно и удержать, чтобы они не аннигилировали. Поэтому речи о том, чтобы накопить антиматерию и использовать ее в качестве источника энергии или оружия не идет».

Фантасты же давно о таком мечтают: благодаря Джону Кэмпбеллу и Джеку Уильямсону антиматерия сделалась одним из обязательных атрибутов фантастики о космическом будущем человечества. Например, варп-двигатель, использующий аннигиляцию антивещества, позволял летать звездолету Enterprise из саги Star Trek.

Темная материя и гравитационное линзирование

Один из способов сделать это — изучить эффект гравитационного линзирования галактик. Гравитационное линзирование — это изменения траектории света, проходящего рядом с массивным объектом. Чем массивнее объект, тем больше наблюдаемое отклонение. Если галактики действительно более массивны, чем кажутся, из-за того что в них присутствует темная материя, эффект линзирования будет отличаться от подобного для галактик без нее.

Теория, конечно, довольно спорная. Но, в любом случае, у ученых появилось альтернативное объяснение видимым аномалиям в свойствах галактик. Ведь само существование некой материи, невидимой для современных средств наблюдения, выглядит не менее экзотично.

Квантовая механика

Квантовая механика скрывает за собой самые интересные тайны Вселенной. Выше уже было сказано: законы квантовой механики идеально функционируют для описания взаимодействий субатомных частиц, однако для описания природы массивных тел, будь то стул и стол или звезда и галактика, квантмех непригоден.

Но что будет, если включить фантазию? В этом разделе физики есть, как минимум, два явления, достойных внимания и ближайшего рассмотрения. Первое из них называется суперпозиция. Некая частица обладает сразу несколькими состояниями до тех пор, пока её не измерят — всё зависит от нас, наблюдателей. Здесь же уместно вспомнить замученного интернет-пользователями кота Шрёдингера: теоретик придумал этот мысленный эксперимент именно для иллюстрации понятия суперпозиции — кот жив и мёртв одновременно, пока коробку не откроют и наблюдатель не сыграет свою роль.

По принципу суперпозиции строятся квантовые компьютеры. В них вместо привычных битов функционируют кубиты (qubit, quantum bit — квантовый бит), которые принимают значения «0» и «1» одновременно. За счёт этого увеличивается скорость вычислений и, соответственно, производительность компьютера.

Другое квантовомеханическое явление называется квантовой запутанностью. Представьте себе две частицы, разведённые по разным концам Вселенной. Если они «запутаны» друг с другом, то как только одна из них примет определённое состояние, другая мгновенно пример противоположное. Если бы они сообщались посредством какого-либо электрического сигнала, то он шёл бы миллиарды лет, а тут смена происходит одновременно.

Фантазии на тему квантовой запутанности приводят учёных к разным выводам. Например, крупная команда исследователей из Принстона, Стэнфорда и Вашингтонского университета рассмотрела это явление с точки зрения макромира, то есть Общей теории относительности. Как показали расчёты, с математической точки зрения связь запутанности между двумя частицами полностью идентична червоточине — гипотетическому туннелю между двумя чёрными дырами, сквозь который можно путешествовать по пространству и времени.

И если представить, что наша Вселенная — всего лишь голограмма, проекция от другой или других миров, это математически означает, что то, что мы видим как квантовую запутанность, есть червоточина, только в четырёхмерном мире.

Исследованием голографического принципа занимается и всю жизнь занимался аргентинец Хуан Малдасена (Juan Maldacena). Изучая квантовую механику, учёный пришёл к выводу, что с ОТО её может примирить лишь теория струн, пока что полностью математическая. В рамках этой теории действует принцип, согласно которому наша Вселенная — результат проекций нескольких других измерений, от каждой из последних взявший по одному измерению.

На одной идее о квантовой запутанности можно зайти очень далеко. В конце концов, мгновенная передача какой-либо информации есть прямо нарушение принципа непреодолимости скорости света. Если когда-нибудь кто-нибудь придумает, как заставить запутанные частицы передавать нужную нам информацию — а пока что к этому не подобрались даже теоретики — то у нас появится шанс, к примеру, связаться с обитателями далёких планет. Если на них, конечно, вообще кто-то живет.

А если придумают как по запутанности передавать материю, то мечты фантастов о телепортации станут реальностью.

* * *

Кстати, за чудесами физики не надо лезть ни в чёрную дыру, ни нырять внутрь атома, достаточно выйти завтра утром на пробежку. Знайте, чем быстрее вы бежите сквозь пространство, тем медленнее движетесь сквозь время. Так что душ будете принимать не только постройневшим, но и помолодевшим.

Текст: Ася Горина, редактор «Вести Наука».

Что происходит внутри черной дыры?

Черные дыры — не только самые популярные небесные объекты, но и самые загадочные. И дело в том, что, несмотря на то, что их существование более чем подтверждено, они нарушают все известные нам физические законы.

Образовавшиеся после гравитационного коллапса сверхмассивных звезд (они должны быть как минимум в 20 раз больше Солнца), черные дыры представляют собой сингулярность в пространстве-времени, а это означает, что это точка в пространстве без объема, но с бесконечной массой, что означает, что его плотность также бесконечна, и, следовательно, его гравитационная сила такова, что даже свет не может, пройдя горизонт событий, избежать его гравитации.

Помимо этого, то, что происходит внутри черной дыры после того, как материя проходит через горизонт событий, было, есть и останется абсолютной загадкой. Все, что делается, будет теориями, но мы никогда не сможем увидеть что-либо из того, что происходит в его «кишках».

Рекомендуем прочитать: «10 самых плотных материалов и объектов во Вселенной»

Когда звезды перестанут рождаться?

Звезды образуются с момента зарождения Вселенной и продолжают формироваться по сей день. Фактически, когда наше Солнце умирает, газ и пыль, которые оно оставляет, образуют туманность, благодаря которой образуется новая звезда

Теперь, принимая во внимание, что галактики все больше отдаляются друг от друга и, следовательно, расстояния между звездами больше, наступит время, когда материя будет так далеко друг от друга, что новые звезды не смогут образоваться

Верят что это может произойти примерно через 10 миллионов миллионов лет и поэтому, когда эти последние звезды умирают, Вселенная становится ледяным кладбищем мертвых звезд.

Суперсимметрия и суперпартнёры: вимпы

По этим причинам большинство учёных сейчас считают, что тёмная материя состоит из неких пока неизвестных частиц. Эти частицы, скорее всего, возникли в большом количестве на самой заре жизни Вселенной — меньше чем через полсекунды после Большого взрыва, — и с тех пор летают в пространстве, практически ничем себя не проявляя и образуя своеобразный реликтовый фон тёмной материи. Эти частицы условно называют тёмным сектором частиц, и существует множество предположений, каковы их свойства и, главное, как их искать.

Все известные нам частицы объединены учёными в единую схему, которая называется Стандартной моделью. Это чрезвычайно успешная теория. Особенно ярким моментом, подтвердившим её мощь, стало открытие бозона Хиггса, которое было сделано всего несколько лет назад на Большом адронном коллайдере

До этого существование бозона Хиггса было предсказано именно в рамках Стандартной модели, важной частью которой он является

Однако и в Стандартной модели есть логические несостыковки. Чтобы избавиться от них, в конце 1970-х — начале 1980-х годов было предложено немного её расширить. Самым простым и наиболее хорошо изученным расширением является так называемая теория суперсимметрии, или сокращённо SUSY. Эта теория, например, позволяет более естественным образом ввести бозон Хиггса. И, более того, она предсказывает, что его масса должна быть как раз такой, какая была измерена на Большом адронном коллайдере.

Главным следствием теории суперсимметрии является существование у каждой из известных нам частиц пары — так называемого суперпартнёра. Например, суперпартнёром фотона является фотино, а суперпартнёром электрона — сэлектрон.

И вот тут дороги физики элементарных частиц и знаний о тёмной материи пересеклись. Согласно теории SUSY, самая лёгкая из суперчастиц должна слабо взаимодействовать с обычными частицами и при этом быть чрезвычайно стабильной, а это значит, что она является отличным кандидатом на роль частицы тёмной материи.

Как обычно бывает, существует несколько версий теории суперсимметрии, но в большинстве из них самой лёгкой частицей является так называемое нейтралино. Это тяжёлая частица с массой как минимум в сто раз больше массы протона. При этом она никак не взаимодействует со светом.

Нейтралино относится к более широкому классу частиц, называемых «вимпы» (от английского WIMP — Weakly Interacting Massive Particle — слабо взаимодействующая массивная частица). Это тяжёлые частицы, которые восприимчивы только к двум видам взаимодействия: гравитации и слабому ядерному. Их гравитационное воздействие мы видим по влиянию вимпов на вращение галактик, а слабое ядерное взаимодействие настолько слабо, что может быть замечено только в чрезвычайно тонких экспериментах. Особенно замечательным оказалось то, что из наблюдений можно оценить максимальную силу, с которой частицы тёмной материи могут взаимодействовать с барионным веществом.

Другим примером вимпа является суперпартнёр нейтрино — снейтрино. В некоторых суперсимметричных теориях именно он является самой лёгкой частицей. Существуют и более сложные суперсимметричные теории, в которых появляется целая россыпь хороших кандидатов на роль частиц тёмной материи. Однако такие теории чересчур гипотетичны, и всерьёз их обсуждают нечасто.

Что известно и неизвестно о темной материи

Что известно:

  1. Мы можем наблюдать её последствия.

Хотя мы не можем видеть темную материю, мы можем наблюдать и измерять ее гравитационные эффекты.

Наблюдалось, что галактики вращаются гораздо быстрее, чем ожидалось, исходя из их видимой материи, и галактики движутся быстрее в скоплениях, чем ожидалось, поэтому ученые могут вычислить «недостающую массу», ответственную за это движение.

  1. Она обильна.

Она составляет около 85 процентов от общей массы Вселенной и около 27 процентов от общей массы и энергии Вселенной.

  1. Мы знаем больше о том, чем не является темная материя.

Все более чувствительные детекторы снижают возможную скорость, с которой частицы материи темной метки могут взаимодействовать с нормальной материей.

Что неизвестно

  1. Состоит ли он из одной частицы или из многих частиц?

Может ли темная материя состоять из целого семейства частиц, таких как теоретически «скрытая долина» или «темный сектор»?»

  1. Существуют ли силы действующие на темную материю?

Существуют ли силы за пределами гравитации и другие известные силы, которые действуют на эту форму веществ, и может ли она взаимодействовать сама с собой?

  1. Существует ли темная антиматерия?

Может ли она иметь аналог антиматерии, как и нормальная материя, и существует ли подобный дисбаланс, который благоприятствует темной материи над «темной антиматерией», как и в случае с нормальной материей-антиматерией?

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: