Сколько лететь с земли до марса

Теории происхождения спутников Марса

Существует несколько теорий о происхождении естественных спутников Марса. Давайте рассмотрим их подробнее.

Они раньше были астероидами

Учитывая их неправильную форму и большое количество кратеров на поверхности, Фобос и Деймос могут быть астероидами, захваченными гравитационным притяжением Марса (как Феба Сатурна или Тритон Нептуна). Однако близкие к круговым орбиты марсианских спутников маловероятны при таком сценарии. Компьютерные симуляции показывают, что если бы Фобос и Деймос действительно были астероидами, они имели бы гораздо более неправильные орбиты.

Они возникли в результате мощного столкновения

Марсианские спутники могли сформироваться в результате мощного удара (как это вероятно произошло с нашей Луной и спутниками Плутона). Камни и обломки, возникшие в результате столкновения, попали на орбиту Марса. Но, как и в случае с астероидами, компьютерные симуляции опровергают эту теорию. Судя по всему, не существует комбинации параметров столкновения, которая могла бы привести к формированию таких маленьких и легких спутников, как Фобос и Деймос.

Они сформировались из камней и пыли вокруг Марса

Фобос и Деймос могли появиться из гигантского диска камней и пыли, который был на орбите Марса на ранних этапах формирования Солнечной системы. Именно так возникло большинство спутников Юпитера, Сатурна и Урана. Но ученые считают, что такое формирование требует наличие огромного и массивного диска; даже если он когда-то и существовал вокруг Марса, формирование из него одного большого спутника гораздо более вероятно, чем образование двух маленьких.

Они — остатки разрушившегося спутника

Так как три предыдущие гипотезы, объясняющие формирование других естественных спутников, не могут объяснить происхождение Фобоса и Деймоса, ученые придумали новую версию.

Недавние исследования показали, что орбиты Фобоса и Деймоса могли пересечься от 1 до 2,7 миллиардов лет назад. Это позволяет предположить, что их предшественником был большой спутник, который, вероятно, раскололся на части в результате мощного столкновения. Обломки этого спутника могли упасть на поверхность Марса, что объясняет большее количество кратеров на планете.

Чтобы доказать эту гипотезу, нужно больше данных. Ученые надеются получить их от миссии по исследованию спутников Марса (Martian Moons eXploration), которую планирует запустить Японское агентство аэрокосмических исследований. Целью миссии будет исследование спутников и сбор образцов почвы Фобоса. Происхождение марсианских спутников поможет нам лучше понять формирование Солнечной системы.

Цели полета на Марс

Основными целями человеческой миссии на планету являются:

1. Колонизаторская.
Поскольку полет займет очень долгое время, колония – это наилучший вариант для непосредственно изучения Красной планеты. Кроме этого, как бы жестоко ни звучало, ученые получат ответ на вопрос, сможет ли человек существовать в таких условиях, которые есть на планете.

2. Исследовательская.
• Поиски форм жизни.
Большое сходство Земли и Марса позволяет ученым предположить, что на Красной планете могла существовать жизнь. И хотя марсоходы не нашли живых организмов на Марсе, были обнаружены участки с высокой концентрацией метана, источника углерода для белковой формы жизни. Поэтому ученые все еще надеются найти на планете Марс какие-либо микроорганизмы;

• Изучение ценных геологических ресурсов.
Теоретически марсианская лава содержит большие запасы цветных (никель, медь) и драгоценных металлов платиновой группы;

• Исследование природных условий, состава грунта и других особенностей Красной планеты.

Как Mars One оплатит миссию?

Mars One планирует финансировать большую часть своей амбициозной деятельности через глобальное реалити-шоу, которое будет сопровождать миссию от выбора астронавтов до их ранних лет на Красной планете.

Голландская некоммерческая организация всячески собирает деньги. Это означает права на трансляцию, спонсорские сделки, краудфандинг, пожертвования благотворителей и лицензирование прав интеллектуальной собственности на изобретения, сделанные в процессе. Первая миссия стоимостью 6 миллиардов долларов (4 миллиарда фунтов стерлингов) направлена ​​на отправку корабля с двумя мужчинами и двумя женщинами в чужую страну.

2023 год: отправка людей на BFR к Луне

Илон Маск уже представил первого человека, который полетел на Луну на BFR. Это грандиозное событие состоится уже в 2023 году. Это японский миллиардер Юсаку Маэдзава. Не сообщается, сколько иен вложило SpaceX в то, чтобы стать первым космическим туристом. Скорее всего, эта цифра приближается к паре сотен миллионов американских президентов. Миллиардер приобрел все билеты на эту экскурсию и пригласит еще 8 творческих людей присоединиться к нему в рамках своего арт-проекта #dearMoo.

Этот полет нужен не только для того, чтобы баловать багаки и нарезать на нем овощи. Этот полет продемонстрирует, что BFR находится в рабочем состоянии и что люди могут летать на другие планеты.

Марсоход Spirit

2004 год для НАСА был триумфальным в плане изучения Марса. Сразу несколько запущенных марсоходов успешно достигли Марса и также успешно выполнили свои задачи, а некоторые из них и сейчас работают.

Марсоход Спирит сел на планету 4 января 2004 года, и планировалась его работа в течение 90 солов, за которые ему нужно было преодолеть около 600 метров. Однако на деле марсоходу помог ветер, сдувавший пыль с солнечных батарей, благодаря чему выработка электроэнергии стала эффективнее, чем планировалось. В итоге Спирит вместо 600 метров преодолел 7.73 км и проработал до 22 марта 2010 года – более 6 лет!

В последнее время своей работы марсоход использовали как стационарную платформу, так как 1 мая 2009 года он застрял в дюне и вызволить его оттуда не смогли. Несмотря на это, марсоход оставался на связи и продолжал исследования, хотя перемещаться не мог. 22 марта 2010 года марсоход окончательно замолчал, хотя еще целый год специалисты пытались наладить с ним контакт.

Любопытно, что название «Спирит» марсоходу дала русская девочка, которая родилась в Сибири, но была удочерена американцами. Когда НАСА проводило конкурс, это название победило.

Марсоходы Sojourner (маленький), Opportunity (средний) и Curiocity (большой)

Геологические особенности поверхности

О геологическом строении спутника можно судить лишь по полученным фотографиям разных космических экспедиций. Фобос внешне представляет собой продолговатый камень серого цвета со следами ударов с кометами и малыми астероидами, приведших к значительному разрушению грунта спутника. Поверхность марсианской луны имеет пористую структуру, что делает ее неустойчивой к разрушению от столкновений с космическими телами, а также от воздействия солнечного ветра и космической радиации. Сейчас, по подсчетам астрофизиков, пористая структура Фобоса имеет до 40% незаполненных пустот. Местами поверхность покрыта широкими, до нескольких десятков метров, бороздами. Их происхождение не раскрыто, на других космических объектах такого феномена зафиксировано не было. Очевидно, что содержание металлов и других веществ грунта спутника отличается от их содержания на Марсе. Это наблюдение создает преграду на пути к пониманию природы происхождения спутника.

Формирование и состав

По одной из теорий, Фобос не всегда был естественным сопровождающим Марс объектом. Возможно, это заблудившийся в просторах галактики астероид, путешествующий в направлении Солнца. Пролетая между Юпитером и Марсом, столь малый объект не избежал влияния их силы притяжения и попал на свою орбиту. Если сопоставить размер Марса с размерами самого спутника, можно предположить, что миллионы лет назад на поверхности планеты произошел удар с объектом больших размеров, приведший к частичному разрушению северного полушария Марса с высвобождением большого количества веществ. Осколки, пыль, металлы попали на орбиту и под действием слабых приливных сил хаотично сгруппировались в хрупкое неидеальное по форме тело. Однако, на практике эта версия может не найти своего подтверждения, так как даже по внешним признакам грунт на Марсе и Фобосе значительно отличается. Очевидно, что в марсианском грунте содержится группа металлов, окрашивающих планету в коричневые и красные цвета. Фобос же определенно имеет серый цвет поверхности. Окончательно разобраться в этом вопросе поможет исследование образцов грунта Фобоса, получить которые планируется до 2030 года.

Карта поверхности спутника Фобос

Основными обозначенными объектами на карте спутника являются кратеры разных размеров и различной глубины. Самые древние покрыты слоем реголита, сгладившего их рельеф. Но на поверхности также обнаружен единственный на Фобосе объект, близкий к прямоугольнику форме, с предполагаемой высотой 90 м. Однако невозможно рассчитать насколько глубоко монолит уходит под землю. На сегодняшний день, происхождение монолита установить невозможно. Вероятнее всего, это может быть обломком уцелевшего метеорита, удивительно сохранившего столь идеальную форму. Фотоснимки монолита дали повод криптозоологам поднять очередную дискуссию о существовании внеземной цивилизации.

Монолит на спутнике

https://youtube.com/watch?v=i95naZUAoFE%3F

Название кратеров

Самые большие из кратеров названы в честь знаменитых астрофизиков или персонажей книг Дж.Свифта «Путешествия Гулливера». Гигантский кратер на Фобосе назван именем жены открывателя спутника Стикни Холл, его диаметр составляет 9000 км. Внутри этого кратера, есть след удара меньшего размера, названного в честь персонажа книги Свифта Лимтоком. Также еще семь кратеров носят имена персонажей этого романа: Флимнап, Друнло, Грильдриг, Рудрезал, Скайкрас, Кластрил и Гулливер. Многие кратеры названы в честь астрофизиков, таких как Асаф Холл, Эдуард Рош, Иосиф Шкловский, Девид Пэк Тодд, Оливер Уэнделл. Большинство кратеров остаются все еще безымянными.

Юпитер в феврале 2023 года

В течение всего месяца планета Юпитер наблюдается по вечерам в юго-западной и западной областях неба. Это яркая планета, которая не требует особых поисков. Достаточно после наступления вечерних сумерек посмотреть на юго-запад, и вы тут же увидите ее. Единственное светило, с которым вы можете перепутать Юпитер, это планета Венера, которая находится неподалеку. Помните, что:

  • Большую часть февраля Юпитер находится на небе левее (восточнее) и выше Венеры;
  • Венера заметно ярче Юпитера.

Еще раз напомним, что в конце февраля планеты сблизятся настолько, что станет возможным легко сравнить их блеск. Вы удивитесь, насколько Венера ярче Юпитера!

В течение февраля планета-гигант движется на фоне звезд по направлению с запада на восток по созвездию Рыб. Несмотря на это, Юпитер отстает от движения Солнца, которое происходит в том же направлении (на фоне звезд справа налево). Так происходит потому, что Земля огибает Солнце по по своей небольшой орбите гораздо быстрее, чем далекий Юпитер.

В результате мы наблюдаем, как на небе Юпитер приближается к Солнцу. Период его вечерней видимости сокращается с 4 часов в начале февраля до 2 часов в конце. Уменьшается блеск планеты: от -2,18m до -2,10m, а также видимый диаметр: от 36,0″ до 34,2″.

Тем не менее это по-прежнему отличный объект для наблюдений в любительский телескоп.

Видимые размеры Юпитера на небе достаточно велики и мало изменяют в течение периода его видимости, в отличие от Марса или Венеры. Благодаря этому планета-гигант представляет собой интереснейший объект для любительских наблюдений. Фото: Ethan Chappel

Юпитер в телескоп

Для общих наблюдений Юпитера подойдет даже небольшой телескоп с диаметром объектива 60 – 90 мм. В такой инструмент легко заметить четыре крупнейших спутника Юпитера, а также тот факт, что диск планеты сплюснут к полюсам. При благоприятных атмосферных условиях на диске гигантской планеты заметны один или два облачных пояса.

В телескопы с апертурой свыше 100 мм можно различимы некоторые детали в поясах Юпитера, например, Большое красное пятно. Наконец, в телескоп можно попытаться проследить за интересными событиями в системе Юпитера, например, за входом спутника в тень планеты или выходом из нее, а также проходом перед диском планеты. При спокойной атмосфере можно различить даже тень на Юпитере, которую отбрасывает проходящий перед планетой спутник!

Примерно так выглядит Юпитер и его спутники при наблюдении в небольшой любительский телескоп. Рисунок: Stellarium

Важный момент: если вы хотите увидеть как можно больше деталей на диске Юпитера, то наблюдения планеты следует проводить ранним вечером, когда планета располагается максимально высоко над горизонтом!

Типы планет Солнечной системы

В состав Солнечной системы входит 8 основных планет и 5 карликовых, названных так из-за своего размера. Планеты по их физическим свойствам делятся на земную группу и планеты-гиганты.

Земные планеты Солнечной системы

К этой категории относят космические объекты, состоящие из металлов и минералов. По своим размерам они небольшие и плотные. Астрономы называют их еще внутренними планетами. Главные признаки небесных тел этой группы следующие:

  • над твердой оболочкой планеты сразу начинается атмосфера;
  • малое количество спутников или их отсутствие;
  • отсутствуют кольца, как у Сатурна;
  • ученые полагают, что внутри каждой земной планеты находится металлическое ядро, окруженное мантией;
  • поверхность представляет собой тонкий слой коры.

Эти космические объекты находятся ближе всего к Солнцу. Самая маленькая планета земной группы — Меркурий, самая крупная — Земля.

Планеты Солнечной системы газовые гиганты

Астрономы называют их внешними планетами . Если сравнить их , то они намного больше. Но даже газовые гиганты значительно уступают по габаритам Солнцу. Свое название они получили из-за особого строения — газов, в которых преобладает водород и гелий.

Внешние планеты имеют следующие схожие признаки:

  • на низких высотах атмосфера плавно переходит в жидкое состояние из-за роста давления;
  • отсутствует четкое разграничение между «океаном» и атмосферой;
  • есть твердое ядро;
  • есть спутники, превосходящие по размерам некоторые ;
  • имеют кольца, которые заметнее всего у Сатурна.

Планеты Солнечной системы газовые гиганты: Юпитер, Сатурн, Уран, Нептун

Из-за того, что отсутствует четкое разграничение между атмосферой и жидким состоянием, высадиться на газовых гигантах невозможно. Эти планеты находятся дальше от Солнца, в отличие от земной группы.

В этой категории есть отдельный подкласс — ледяные гиганты, к которым относятся Уран и Нептун. Если Юпитер и Сатурн состоят из водорода и гелия, то седьмая и восьмая планеты — из льда.

Карликовые планеты Солнечной системы

Этот термин был введен в 2006 году, когда после исследований ученые выяснили, что существуют космические тела, превосходящие по размерам Плутон. Ранее Плутон имел статус планеты, и его габариты астрономы сопоставляли с Марсом. Но в начале 2000-х годов ученые обнаружили рядом с ним небесные тела, практически одинаковых с ним размеров. Например, Эрида по своим габаритам превосходит Плутон.

Возник вопрос о присвоении статуса всем обнаруженным космическим объектам. Для них было решено ввести новый термин. Кроме Плутона в состав группы карликовых планет вошли:

  • Церера;
  • Эрида;
  • Макемаке;
  • Хаумеа.

За орбитой Нептуна находится еще несколько небесных тел, претендующих на статус карликовой планеты. Все они, за исключением Цереры, находятся в поясе Койпера — облаке астероидов. Есть второй пояс из астероидов, основной, расположенный между Марсом и Юпитером — именно в нем находится Церера.

Карликовые планеты отличаются от земной группы и газовых гигантов тем, что не могут самостоятельно расчистить себе путь из-за маленькой массы. Они пересекают своими орбитами места скоплений других небесных тел. У карликовых планет отсутствует гравитационное поле, поэтому на их орбите постоянно находятся мелкие космические объекты.

Благодаря развитию технологий, ученые смогли обнаружить еще несколько кандидатов на получение статуса карликовых планет. Но астрономы на данный момент не располагают необходимыми данными. Карликовые планеты остаются малоизученными и все показатели являются приблизительными. Их объединяет наличие ледяного слоя на поверхности. Лучше всего изучена Церера, потому что другие «карлики» находятся слишком далеко от Земли.

Краткая история изучения

Впервые человечество начало наблюдать за Марсом отнюдь не через телескопы. Ещё древние египтяне заметили Красную планету как блуждающий объект, что подтверждается древними письменными источниками. Египтяне впервые рассчитали траекторию движения Марса относительно земли.

Затем эстафету переняли астрономы Вавилонского царства. Учёным из Вавилона удалось более точно определить расположение планеты и измерить время её движения. Следующими были греки. Им удалось создать точную геоцентрическую модель и с её помощью понять движение планет. Затем учёные Персии и Индии смогли оценить размер Красной планеты и её расстояние до Земли.

Огромный прорыв сделали европейские астрономы. Иоганн Кеплер, взяв за основу модель Николая Каперника, смог рассчитать эллиптическую орбиту Марса, а Христиан Гюйгенс создал первую карту его поверхности и заметил ледяную шапку на северном полюсе планеты.

Появление телескопов стало расцветом в изучении Марса. Слайфер, Барнард, Вокулёр и многие другие астрономы стали величайшими исследователями Марса до выхода человека в космос.

Выход человека в космос позволил изучать Красную планету более точно и подробно. В середине 20 века с помощью межпланетных станций были сделаны точные снимки поверхности, а сверхмощные инфракрасные и ультрафиолетовые телескопы позволили измерить состав атмосферы планеты и скорость ветров на ней.

В дальнейшем последовали всё более точные исследования Марса со стороны СССР, США, а затем и других государств.

Изучение Марса продолжается и по сей день, а полученные данные только подогревают интерес к его изучению.

Марс, мы идем

Коммерческий проект Mars One возглавляет голландец Бас Лансдорп, в его команде восемь сотрудников. Компания отбирает будущих «марсиан» и готовит их к полету, но не строит космические корабли. По словам Лэнсдорпа, этим займутся подрядчики, за которые Mars One готова платить. По прогнозам компании, для реализации плана потребуется около шести миллиардов долларов, а еще четыре миллиарда будут стоить каждый дополнительный запуск корабля.

Средства собираются различными способами, в том числе через краудфандинговые платформы или через частных инвесторов. Организаторы миссии планируют снять аналогичный документальный фильм о жизни людей на Красной планете, который будет транслироваться по телевидению.

Организаторы проекта будут использовать готовые прототипы других компаний. Во-первых, Mars One запустит дрон в полет, чтобы найти место для строительства колонии. Кроме того, с Земли на Марс будут отправлены посадочный модуль и спутник связи. Ожидается, что конструкция модуля будет основана на модуле Phoenix, который использовался НАСА в 2007 году. Высадка первых колонистов Mars One была запланирована на 2025 год, но даты неоднократно переносились — теперь мы говорим о 2031 году четверо колонистов отправятся на Марс, через два года еще четверо и так далее (всего первое поселение будет состоять из 24 пришельцев с Земли).

Рекомендации для наблюдателей Марса

Все вышеописанное можно увидеть с Земли в хорошие любительские телескопы. Но следует помнить, что даже в хороший телескоп Марс все равно будет выглядеть крохотным диском. Детали его поверхности трудноуловимы, кроме того, они будут то появляться, то исчезать в дрожащем, неровном изображении, которое создает плотная и неспокойная атмосфера нашей планеты. Требуется запастись немалым терпением.

Необходимо очень точно сфокусировать телескоп. Лучше всего настраивать резкость по полярной шапке Марса как наиболее контрастному объекту на его поверхности.

Смотреть в небо: 6 полезных ссылок для тех, кто хочет изучать астрономию

Не надейтесь немедленно рассмотреть все мелкие детали. Приступая к наблюдениям, расслабьтесь, дайте своему зрению несколько минут на распознавание увиденного. Первое, что бросится вам в глаза, — белая полярная шапка на оранжевом диске. Через некоторое время начнут проступать тусклые серо-зеленые пятна морей. Старайтесь не пропускать наблюдения и с каждыми разом вы станете замечать все больше.

Марсу требуется для оборота вокруг своей оси на 37 минут больше, чем Земле. Если наблюдать его из ночи в ночь в одно и то же время, можно постепенно за 5-6 недель изучить всю поверхность планеты.

Что еще можно увидеть с Марса

Схема небесных тел, такая же какую мы видим, находясь на земной поверхности. Например, вид с Марса на Млечный Путь. Масштаб Млечного Пути настолько огромен, что расстояние между Землей и Красной планетой ничто в сравнении с ним. Поэтому если человечеству удастся в будущем рассматривать Млечный Путь с Земли или с Марса, наблюдающий не заметит различий.

Изображения, созданные спутниковым аппаратом Mars Surveyor (на марсианской орбите) в 2003 году показали, что планета, на которой мы живем, ярче Марса, видимого с Земли. С поверхности Марса можно наблюдать его два основных спутника: Фобос и Деймос.

На снимке с марсохода Curiosity от 1 августа 2013 года видны спутники Марса: Фобос и Деймос в одном кадре

Фобос создает орбиту короткой продолжительности, вращающуюся три раза за один день. Космический орбитальный аппарат NASA принял образ Фобоса с расстояния около 6800 км (около 4200 миль).

Изображение, снятое NASA, показывает, что поверхность Деймоса состоит из только недавних ударных кратеров.

Вид с Марса на Фобос и Деймос удивителен тем, что эти спутники Марса могут затмить Солнце, хотя ни один из них не может полностью покрыть солнечный диск, и поэтому событие на самом деле является транзитом, а не затмением.

Вид с Марса также открывается на Солнце, расстояние между ними составляет около 142 миллионов миль. Поскольку эта планета, которая находится в полтора раза дальше от Солнца, чем наша планета, Солнце кажется меньшим на пыльном небе.

Солнце видно с Марса только 5/8 от размера, которое оно занимает в земном небе. В то же время на планету попадает на 60% меньше света, чем на Землю, что примерно так же, как яркость пасмурного дня на Земле.

Вид с Марса на Юпитер имеет такой же явный блеск от Красной планеты, как и от Земли, поскольку имеет высокую отражающую способность (альбедо). Вид на Юпитер может казаться немного больше в марсианском небе, чем на Земле, но он все равно будет похож на «звездный» точечный источник света и не будет отображаться как видимый диск невооруженным глазом.

Космический аппарат Mars Reconnaissance Orbiter снял эту фотографию с камеры HiRISE с телескопом на 0,5 метра

Венера самая яркая из всех планет Солнечной системы, видимых с Марса. Она отражает более 70 % света, падающего на ее поверхность.

Меркурий обладает звёздной величиной, равной 0.35m и будет иметь такой же вид как с Земли. Только из-за незначительного углового расстояния от Солнца, обнаружить его ещё сложнее.

По сравнению с тем, как выглядят с Земли внешние планеты (Юпитер, Сатурн, Уран и Нептун), при тесном сближении с Марсом они будут тускнеть. Но во время противостояния они будут приобретать яркую окраску. Этот эффект наиболее заметен для Юпитера и является результатом большой орбиты Марса по сравнению с Землей, вызывающей вариации межпланетного расстояния.

Подводя итог можно сказать, что Венера является самым ярким космическим объектом при взгляде с Марса, наша планета на третьем месте, уступив также Юпитеру, за счет того, что отражающая способность Венеры превышает земную.

Пригодилась информация? Плюсани в социалки!

  • Какой будет вес человека на планете Марс и чему равна разница с Землей
  • Планета Марс: расстояние до Солнца
  • Вулканы-причины возникновения гор на Марсе

ExoMars Trace Gas Orbiter

«Орбитальный аппарат для исследования малых составляющих атмосферы» (англ. Trace Gas Orbiter, сокр. TGO) — космический аппарат для изучения происхождения малых газовых составляющих в атмосфере Марса с орбиты искусственного спутника. Запущен в рамках первого этапа программы «ExoMars».

Второй этап миссии (платформа и марсоход) в очередной раз перенесен (на 2022 г.)

Аппарат создан  специалистами Европейского космического агентства. Два из четырёх научных приборов разработаны в Институте космических исследований РАН.

Аппарат исследует и выяснит природу возникновения в атмосфере Марса малых составляющих: метана, других газов и водяного пара, о содержании которых известно с 2003 года. Наличие метана, быстро разлагающегося под ультрафиолетовым излучением, означает его постоянное поступление из неизвестного источника. Таким источником могут быть ископаемые или биосфера — живые организмы

Как Земля выглядит с Марса

Расстояние от Земли до Марса может сильно варьироваться, так как орбита Марса имеет сферическую форму, и ее центр не совпадает с местом расположения Солнца. Исходя из таких особенностей, Марс то приближается к Земле, то отдаляется от нее. Именно максимальное приближение к нашей планете дает отличную возможность для наблюдения.

Земля – это внутренняя планета Солнечной системы, то есть она никогда не заходит слишком далеко от Солнца и проходит фазы, подобные Луне и другим внутренним планетам. Любопытно, что за Землей интересней наблюдать, когда идет время утренних и вечерних сумерек. На Марсе, расположенном на расстоянии от нашей планеты в 154 миллиона миль, наша планета может находиться и светить на звездную величину, равную 1.4, почти так же, как Сириус – самая яркая звезда в небе. С Марса Земля вместе с Луной похожа на двойную звезду, при этом Луна имеет более тусклый цвет. Для человеческого глаза наша планета будет сиять бледным цветом морской воды.


Земли и Луны, захваченных космическим аппаратом «Марс Экспресс» 3 июля 2003 года

Один снимок был запечатлен зондом Экспресс в 2003 году. На нем изображены Земля и Луна во время противостояния одновременно.

Наиболее удачной охотой за изображением без фильтров стала работа вездехода Спирит в 2004 году. Фотографии, сделанные учеными, изображают нашу планету светящейся в виде самой яркой звезды ночного неба.

Также учеными представлены снимки, на которых изображены наша планета и Луна на марсианском ночном небе. В этот момент расстояние от Земли до Марса в среднем составляло около 150 миллионов километров.

«Человеку с хорошим зрением, если он находится на Марсе, можно лицезреть Землю и Луну в виде ярких вечерних звезд, – сказали представители НАСА в дополнении к описанию изображения. Кроме некоторой обработки, чтобы изменить эффекты космических лучей, фотографии не редактируются ни в каких программах, добавили они.

На сегодняшний день в арсенале ученых, изучающих космическое пространство, имеется множество фотографий нашей планеты с разных ракурсов и уголков Вселенной

Каждый кадр напоминает человечеству о том, как мала наша планета в масштабах галактического пространства и как важно сохранить ее для будущих поколений

Исследования

Снимок марсианского спутника Деймос, сделанный аппаратом Викинг-2 с расстояние 1400 км в 1977 году. Изображение: NASA

Огромное число исследовательских миссий оказались неудачными. Однако все же кое-что о марсианских лунах человечеству удалось узнать.

Еще в 1894 году Белопольскому удалось сделать снимки Деймоса. Также снимки спутников получил Костинский в 1909 и в 1896 году.

Струве представил теорию о движении Фобоса и Деймоса в 1911 году.

Двадцать седьмого марта 1969 года была запущена межпланетная станция Маринер-7. Она сделала несколько фотографий поверхности Марса, на которых удалось запечатлеть тень, отбрасываемую Фобосом.

Через несколько лет был сконструирован новый летательный аппарат. Маринер-9 запустили 31 мая 1971 года с целью исследования красной планеты. Кстати, именно эта межпланетная станция и стала первым искусственным спутником за пределами земной орбиты. Ему удалось сделать снимки самого Фобоса и Деймоса.

Через шесть лет в 1977 году две орбитальные станции Викинг-1 и Викинг-2 смогли подарить нам новые снимки лун красной планеты.

1988 год ознаменовался запуском двух советских автоматических межпланетных станций. Фобос-1 и Фобос-2 предназначались не только для изучения четвертой планеты Солнечной системы и ее спутников, но также для исследования Солнца, межпланетных ударных волн и других объектов. От первого аппарата удалось получить некоторые данные о нашем светиле, однако вскоре связь со станцией была утеряна. Фобос-2 же сделала несколько снимков, однако основная цель миссии достигнута не была: аппараты не были спущены на поверхность большего спутника красной планеты.

Через десять лет была запущена новая автоматическая межпланетная станция, на этот раз из США. Целью миссии было картографирование Марса, которая была достигнута еще в 2001 году, но, несмотря на это, аппарат продолжал использоваться вплоть до 2006 года, когда связь с космической станцией была утеряна.

В 2003 году с космодрома Байконур была запущена межпланетная станция, которая до сих пор функционирует. Аппарат проводил исследования Марса. Он сумел найти в атмосфере планеты метан, а также воду в замершем состоянии. К тому же Марс-экспресс (так называлась эта станция) получила несколько снимков Фобоса.

Снимки Фобоса также были получены от американского Марсианского разведывательного спутника в 2007 и в 2008 годах.

Запущенный еще в 2001 году Mars Odyssey измерил температуру поверхности Фобоса при полном солнечном освещении. По шкале Цельсия температура составила двадцать семь градусов во время освещения Солнцем и сто двадцать три градуса ниже нуля без попадания на космическое тело солнечных лучей.

Девятого января 2011 года снова отличился Марс-экспресс, который и на этот раз смог получить несколько снимков Фобоса, сильно приблизившись к нему.

В том же 2011 году была предпринята попытка запуска аппарата для доставки на нашу планету грунта с Марса и Фобоса. Однако российская автоматическая межпланетная станция Фобос-Грунт так и не смогла покинуть земную орбиту и в 2012 году сошла с нее сгорев в атмосфере.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: