Финальные стадии эволюции звезд
Достигнув фазы красного гиганта, нормальная звезда под влиянием гравитационных процессов становится белым карликом. Если масса звезды примерно равна массе нашего Солнца, все основные процессы в ней будут происходить спокойно, без импульсов и взрывных реакций. Белый карлик будет умирать долго, выгорая дотла.
В случаях, когда звезда изначально имела массу больше солнечной в 1,4 раза, белый карлик не будет финальной стадией. При большой массе внутри звезды начинаются процессы уплотнения звездного вещества на атомном, молекулярном уровне. Протоны превращаются в нейтроны, плотность звезды увеличивается, а ее размеры стремительно уменьшаются.
Нейтронная звезда
В том случае, если мы имели изначально дело со звездой большой массы, финальный этап эволюции принимает другие формы. Судьба массивной звезды – черная дыра — объект с неизученной природой и непредсказуемым поведением. Огромная масса звезды способствует увеличению гравитационных сил, приводящих в движение силы сжатия. Приостановить этот процесс не представляется возможным. Плотность материи растет до тех пор, пока не превращается в бесконечность, образуя сингулярное пространство (теория относительности Эйнштейна). Радиус такой звезды в конечном итоге станет равен нулю, став черной дырой в космическом пространстве. Черных дыр было бы значительно больше, если бы в космосе большую часть пространства занимали массивные и сверхмассивные звезды.
Черная дыра
Рождение сверхновой – самая впечатляющая финальная стадия эволюции звезд. Здесь действует естественный закон природы: прекращение существование одного тела дает начало новой жизни. Период такого цикла, как рождение сверхновой, в основном касается массивных звезд. Израсходовавшиеся запасы водорода приводят к тому, что в процесс термоядерного синтеза включается гелий и углерод. В результате этой реакции давление снова растет, а в центре звезды образуется ядро железа. Под воздействием сильнейших гравитационных сил центр массы смещается в центральную часть звезды. Ядро становится настолько тяжелым, что неспособно противостоять собственной гравитации. Как следствие, начинается стремительное расширение ядра, приводящее к мгновенному взрыву. Рождение сверхновой — это взрыв, ударная волна чудовищной силы, яркая вспышка в бескрайних просторах Вселенной.
Взрыв сверхновой
Следует отметить, что наше Солнце не является массивной звездой, поэтому подобная судьба ее не грозит, не стоит бояться такого финала и нашей планете. В большинстве случаев взрывы сверхновых происходят в далеких галактиках, с чем и связано их достаточно редкое обнаружение.
Время жизни звезд. Жизненный цикл звезд
После того как внутри звезды исчерпываются запасы водорода, приходят серьезные перемены. Остатки водорода начинают сгорать не внутри ее ядра, а на поверхности. При этом все больше сокращается время жизни звезды. Цикл звезд, по крайней мере, большинства из них, на этом отрезке переходит в стадию красного гиганта. Размер звезды становится больше, а ее температура – напротив, меньше. Так появляется большинство красных гигантов, а также сверхгигантов. Этот процесс входит в состав общей последовательности происходящих со звездами изменений, которые ученые назвали эволюцией звезд. Цикл жизни звезды включает все ее стадии: в конечном счете все звезды стареют и умирают, а продолжительность их существования напрямую определяется количеством топлива. Большие звезды заканчивают свою жизнь огромным, эффектным взрывом. Более скромные, наоборот, погибают, постепенно сжимаясь до размеров белых карликов. Затем они просто угасают.
Сколько по времени живет средняя звезда? Жизненный цикл звезды может длиться от менее 1,5 млн лет и до 1 млрд лет и более. Все это, как было сказано, зависит от ее состава и размеров. Звезды, подобные Солнцу, живут от 10 до 16 млрд лет. Очень яркие звезды, наподобие Сириуса, живут относительно недолго – всего лишь несколько сотен миллионов лет. Схема жизненного цикла звезды включает в себя следующие этапы. Это молекулярное облако – гравитационный коллапс облака – рождение сверхновой звезды – эволюция протозвезды – окончание протозвездной фазы. Затем следуют этапы: начало стадии молодой звезды – середина жизни – зрелость – стадия красного гиганта – планетарная туманность – этап белого карлика. Последние две фазы свойственны звездам малого размера.
Жизненный цикл до сверхновой
Пока в недрах звезды осуществляется термоядерная реакция, водород превращается в гелий и звезда «работает», как наше Солнце. Будет ли это длиться вечно? Конечно нет. Запасы водорода ограничены и в какой-то момент (через несколько миллиардов лет) они будут исчерпаны полностью. Водородное топливо станет гелиевым, а во внешней оболочке все еще будут продолжаться реакции.
Ядро перенасыщается гелием и растет, раздувается, масса увеличивается очень быстро! Опять начинается гравитационный коллапс. В момент этой фазы звезда становится красным гигантом. Внутри светила снова запускаются термоядерные реакции и гелий начинается превращаться в углерод, кислород, кремний и так далее до железа.
picserio.com
Все. Жизнь звезды подходит к концу. Если она была массивной и раз так в 8-10 крупнее Солнца, то скорее всего звезда превратится в сверхновую и разразится взрывом во Вселенной. Вспышки сверхновых — это нечто. Они могут быть в сотни раз ярче целой галактики. Ударная волна, которая промчится по пространству, запустит механизм сжатия других молекулярных облаков, а значит где-то в отдаленных уголках Вселенной начнется зарождение очередных звезд.
Если умирающая звезда была достаточно массивной, то возможно зарождение черной дыры. Что такое черная дыра и какие подробности известны ученым на сегодняшний день? Об этом мы говорили в деталях ЗДЕСЬ.
Общие сведения
Самое распространенное определение звезды в астрономии — образование из раскаленного газа в форме шара. По мере развития жизненного цикла изменяется структура и состав светил. Поскольку невозможно увидеть их строение воочию, создаются модели, основанные на сложных вычислениях. В структуре звезд обычно выделяют:
- Ядро, в котором проходят реакции термоядерного синтеза (РТС). Здесь находятся только свободные ядра атомов и электроны, поэтому они упакованы гораздо плотнее, чем если бы это были целые атомы.
- Зона переноса лучистой энергии. Во время её прохождения лучи сохраняют количество энергии, но меняются качественно, увеличивая длину волны. Например, из недр Солнца выходят рентгеновские и гамма-лучи, а с поверхности — световые и инфракрасные.
- Зона конвекции, где происходит перемешивание газовых слоев. У более старых светил эта область меньше, а внешние со временем разрастаются.
- Фотосфера и хромосфера. На внешней поверхности звёзд часто наблюдаются выбросы газа — протуберанцы.
В космосе распространены самые разные звездные системы, состоящие из двух, трех и более звезд. Главное условие того, что объекты составляют систему — они должны вращаться вокруг общего центра тяжести. Самые горячие светила — белые и голубые гиганты. Холодные звезды бывают красными гигантами или почти остывшими коричневыми карликами.
Общая информация
Эволюция Звезд
Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?
Астрономы находят звезды
По состоянию на середину 2020 года было зафиксировано лишь несколько звезд с содержанием железа ниже 1/10 000.
Технические ограничения телескопов или помехи от других звезд привносят очень правдоподобные «подделки» в спектральные линии
Поэтому анализ, который проводят ученые с целью понять и удалить эту погрешность, является жизненно важной работой
Звезда SMSS J1605-1443
Текущий рекордсмен по самому низкому содержанию железа — это звезда SMSS J1605-1443. Обнаруженная в 2018 году, эта мега-звезда с гало, бедная металлами, содержит менее 1/1000000 доли от «солнечного» железа.
Это очень мало, а значит, это и есть искомая звезда первого поколения? К сожалению, нет.
Уровни других тяжелых металлов, присутствующих в спектре, слишком высоки. Она просто не могла создать их все сама — ей должна была «помочь» предыдущая сверхновая. Это все равно что почти идеально подделать египетскую мумию, но оставить на запястье умные часы.
Уровни железа, обнаруженные в SMSS J1605-1443, были низкими, но они определенно были.
Звезда SMSS J1605-1443
Звезда SM0313-6708
Однако есть одна звезда, на которой вообще не было обнаружено железа — SM0313-6708, зафиксированная в 2012 году. Спектроскопия высокого разрешения SM0313-6708 в 2013 году не показала … ничего особенного. Вместо леса линий поглощения у этой звезды почти не было активности и присутствовали только четыре металла: литий, углерод, магний и кальций.
Везде, где должен был быть провал, связанный с наличием железа, была просто жирная линия, указывающая на отсутствие железа. Можно сказать совершенно точно, что это звезда, бедная железом, — по крайней мере 1/10 000 000 от «солнечного» железа.
Это звучит многообещающе. Была обнаружена звезда, в которой, похоже, полностью отсутствует железо. Получается, это звезда первого поколения? К сожалению, это еще одно «нет».
Были обнаружены только четыре металлических элемента, но все же их количества были слишком большими. Их нельзя было получить исключительно путем ядерного синтеза в пределах первой звезды. Однако это было мучительно близко.
Уровни металлов, обнаруженные в SM0313-6708, настолько низкие, что они могли образоваться из облака, обогащенного всего лишь одной сверхновой! Итак, то, что мы здесь видим, не является звездой первого поколения, но вполне может быть первым потомком!
Сейчас эта звезда SM0313-6708 считается самой древней звездой во Вселенной.
Самая древняя звезда SM0313-6708
Звездные скопления
Астрономы очень любят исследовать скопления звезд. Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам – каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.
Эволюция звёзд различной массы
Стоит отметить, что звездные тела имеют разные характеристики.
Низкая масса
Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.
К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода.
Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.
Белый карлик
Средняя масса
Как оказалось, эволюция звёзд при средней массе тела проходит по следующему пути.Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.
Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.
Красный гигант
Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.
Массивные звезды
А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.
Конвективная зона
Звездные величины некоторых объектов
- Солнце = −26,7m
- Полная Луна = −12,7m
- Вспышка Иридиума = −9,5 m. Iridium – это система из 66 спутников, которых движутся по орбите Земли и служат для передачи голоса и прочих данных. Периодически поверхность каждого из трех главных аппаратов отсвечивает солнечный свет в сторону Земли, создавая ярчайшую плавную вспышку на небосводе до 10 секунд.
Вспышка Иридиума
- Ярчайший взрыв сверхновой, в 1054-м году, вследствие которого, как считается, образовалась Крабовидная туманность = −6,0 m. Если верить записям китайских и арабских астрономов, сверхновую можно было наблюдать целых 23 дня, даже в дневное время невооруженным глазом.
- Венера во время максимума = −4,4 m
- Земля, для наблюдателя на Солнце = −3,84 m
- Марс во (макс.) = −3,0 m
- Юпитер (макс.) = −2,8 m
- МКС (макс.) = −2 m
Трасса Международной космической станции на фоне созвездия Большой Медведицы
- α Центавра = −0,27 m
- Вега = +0,03 m
- Галактика Андромеды = +3,4 m
- Тусклые звезды, которые еще может уловить человеческий глаз = +6 m — +7 m
- Проксима Центавра = +11,1 m
- Ярчайший квазар = +12,6 m
- Объекты, улавливаемые наземными телескопами (8-миметровыми) = +27 m
- Объекты, улавливаемые космическим телескопом Хаббл = +30 m
Как была создана Теория “большого взрыва”
В 1917 г. было обнаружено, что в спектре некоторых “туманностей”, спектральные линии явственно смещены к красному концу спектра. А надо сказать, что в ту пору, как и во времена Шарля Мессье, “туманностями”, из-за не совершенства оптических приборов, именовали любые светящиеся объекты на небосклоне, имеющие неясные очертания (т.е. “туманностью” могла быть и классическая туманность и далекая галактика и звездное скопление).
Эдвин Хаббл и красное смещение галактик
Что одним и тем же термином обозначались совсем разные объекты, выяснилось лишь десятилетие спустя, когда известный американский исследователь Эдвин Хаббл с помощью крупнейшего на то время телескопа установил, что некоторые из туманностей являются скоплениями звезд. С тех пор туманностями астрономы называют лишь разреженные облака газа и пыли. Для объектов же, «распавшихся» на звезды и оказавшихся в действительности огромными и очень далекими от нас звездными системами, придумали термин галактики.
Постепенно к началу 30-х годов сложилось мнение, что главные вещественные составляющие Вселенной — галактики, каждая из которых в среднем состоит приблизительно из ста миллиардов звезд. Солнце вместе с Солнечной системой входит в нашу Галактику “Млечный путь”, и основная масса звезд которую мы наблюдаем на небосклоне, принадлежит той же галактике. Кроме звезд и планет Галактика содержит также значительное количество разреженных газов и космической пыли.
Когда в 1929 г. Эдвин Хаббл составил сводку всех известных к тому времени данных по «красному смещению» в спектрах галактик, результат получился неожиданным. За исключением знаменитой туманности Андромеды (галактика М31) и двух других ближайших звездных систем, в спектрах остальных галактик спектральные линии были смещены к красному концу тем сильнее, чем дальше от нас находились эти галактики.
Величина красного смещения была пропорциональной расстоянию до источника излучения — такова была строгая формулировка неожиданно открытого Хабблом закона, по-простому звучавшего так – если объект удаляется от наблюдателя, его спектр смещается в красную часть, и чем дальше объект от наблюдателя, тем сильнее происходит это смещение.
Расширяющаяся вселенная – проблема не только математики, но и философии!
Если приписать «красное смещение» хорошо известному физикам принципу Доплера (частота излучения объекта изменяется тем сильнее, чем быстрее объект наблюдения движется относительно наблюдателя), то получается, что все галактики с огромными скоростями (в сотни, тысячи и десятки тысяч километров в секунду) разлетаются прочь от Земли. Иными словами, все космические объекты не стоят на месте, а постоянно удаляются друг от друга, то есть Вселенная постоянно расширяется и делает это непрерывно.
Этот вывод казался поначалу явно ошибочным. Рушились сложившиеся веками представления о спокойной, стабильной Вселенной, а главное, был непонятен физический механизм, заставляющий галактики «разбегаться» друг от друга. К этим сомнениям научного характера примешивались и возражения чисто философские.
К началу 30-х годов широкую популярность приобрела теория конечной, замкнутой Вселенной, разработанная Альбертом Эйнштейном. При некоторых упрощающих предположениях о структуре Вселенной и использовании теории относительности можно доказать, что вследствие действия гравитации трехмерное космическое пространство должно быть замкнутым, конечным, хотя и безграничным, как поверхность шара. Это, правда, только аналогия, не больше. Если Вселенную и можно назвать шаром, то шаром четырехмерным, не поддающимся наглядному представлению. В сферическом замкнутом космосе Эйнштейна количество галактик хотя и очень велико, но все же конечно. Значит, конечна и масса такой замкнутой Вселенной, как конечны ее объем и радиус.
Астроном Эдвин Хаббл – в честь абы кого, целый космический телескоп не назовут!
Процесс рождения
Звезды, как и все во Вселенной, проходят этапы зарождения, жизни и умирания. На это уходят миллиарды лет, но в космосе находятся объекты на разных этапах развития. Поэтому астрономы смогли составить некоторое представление о том, как развиваются звезды.
Теория появления протозвезд
На сегодня наиболее вероятной считается теория появления звезд из облака, образованного космической пылью и газом (водородом по большей части), которое имеет огромную массу из-за своих размеров. В поперечнике она может достигать 300 световых лет. В результате гравитационного сжатия газопылевого облака сначала образуется так называемая протозвезда. Причины, по которым может начаться процесс:
- столкновение двух подобных облаков;
- прохождение облака вблизи рукава спиральной галактики, где находятся плотные скопления светил;
- ударная волна, вызванная появлением сверхновой звезды в близлежащем пространстве;
- при столкновении галактик возможно множественное звездообразование.
Температура в центре протозвезды неуклонно возрастает и в какой-то момент достигает порога, после которого протоны молекул водорода могут преодолеть силы отталкивания и вступить в РТС и превратиться в гелий. Итог — образование гелиевого ядра и потока элементарных частиц.
При этом выделяется значительное количество тепловой энергии, разогревающее ядро протозвезды до сверхвысоких температур. Избыточная энергия устремляется к ее поверхности и вовне. Так в космосе рождается новое светило. В этот момент начинает возрастать внутри звездное давление, что не дает силам гравитации сжать светило до сверхплотного состояния. Ее внутреннее давление непрерывно возобновляется, что обеспечивает энергетическое равновесие и устойчивое состояние звезды.
Диаграмма Герцшпрунга-Рассела
Она графически изображает состояние звездных объектов на разных стадиях жизненного цикла. На диаграмме четко видны группы, сформированные согласно физическим характеристикам звезд, соответствующих разным этапам их эволюции. Стадия активного сжигания водорода, согласно этой диаграмме, относится к основной фазе жизненного цикла. В ней находится и Солнце. С его зарождения прошло около 5 млрд лет. Примерно столько же светилу осталось жить.
Что такое черные дыры
Нейтронные звезды образуются в результате эволюции звезд с массами от 8 до 40 солнечных масс. А вот из более крупных тел появляются черные дыры. Во Вселенной это самые фантастические объекты. Здесь не имеют силы законы нашего мира, время и пространство меняются местами, и оттуда нет выхода. Это связано с тем, что невероятной гравитации такого тела не может противостоять ничто во Вселенной.
Черные дыры – это звезды, у которых все наоборот. Если обычные светила излучают свет, то эти объекты их поглощают. Как, впрочем, и все, что оказывается поблизости – планеты, звезды, кометы и прочие объекты. Гравитация внутри черных дыр настолько большая, что это с трудом могут представить себе даже ученые.
Черные дыры являются последней стадией эволюции сверхмассивных звезд. В них заключено 0,1% массы всей нашей Галактики.
Название черная дыра было предложено в 1968 году американским физиком Джоном Уилером. Впервые астрономы обнаружили черную дыру, когда исследовали двойные звезды. Тогда оказалось, что одна из звезд такой системы как-то странно блестит. В результате произведенных расчетов было установлено, что рядом с ней находится черная дыра. Эта «невидимка» поглощала свою соседку, забирая у нее материю.
Поглощение звезды черной дырой Источник
Таинственные объекты активно поглощают вещество своих соседей, нагревая его при этом до температуры миллионов градусов. При таких условиях черная дыра становится источником рентгеновского излучения. Неподалеку от этих объектов отмечается сильное искривление пространства. Здесь даже движение световых лет изменяется. Это помогает найти удивительные образования – гравитационные линзы, которые указывают на то, что в их центре прячутся черные дыры.
Сегодня ученым известно местоположение 20 массивных и 200 сверхмассивных черных дыр. Кроме того, отмечено еще 220 мест, где эти таинственные объекты могут находиться
Особое пристальное внимание ученых к этим объектам объясняется достаточно просто. Относительно недавно американский телескоп «Хаббл» зафиксировал интересный, но не слишком приятный факт
Оказывается, черная дыра GROJ 11655 – 40 из созвездия Скорпиона прямиком приближается к нашему Солнцу, поглощая по дороге звезды. Невидимка находится от нас достаточно далеко – в 600 световых лет. Однако скорость движения этого объекта составляет 40 000 км/час. Поэтому это вызывает опасение у современных исследователей.
Самая знаменитая черная дыра расположена в созвездии Лебедя. Предположительно неизвестный объект тяжелее нашего Солнца в 15 раз.