Технические данные
Общий вид на орбите
Космический телескоп Хаббл, представляет собой сооружение цилиндрической формы протяжённостью 13,3 м, окружность которого составляет 4,3 м. Масса телескопа до оснащения спец. оборудованием составляла 11 000 кг, но после установки всех необходимых для исследования приборов общая его масса достигла 12 500 кг. Питание всего установленного в обсерватории оборудования осуществляется за счет двух солнечных батарей, установленных прямо в корпус данного агрегата. Принцип работы представляет собой рефлектор системы Ричи-Кретьена с диаметром главного зеркала 2,4 м, это дает возможность получать изображения с оптическим разрешением порядка 0,1 угловой секунды.
Технические данные
Космический телескоп Хаббл, представляет собой сооружение цилиндрической формы протяжённостью 13,3 м, окружность которого составляет 4,3 м.
Масса телескопа до оснащения спец. оборудованием составляла 11 000 кг, но после установки всех необходимых для исследования приборов общая его масса достигла 12 500 кг.
Питание всего установленного в обсерватории оборудования осуществляется за счет двух солнечных батарей, установленных прямо в корпус данного агрегата.
Телескоп Хаббл — строение
Принцип работы представляет собой рефлектор системы Ричи-Кретьена с диаметром главного зеркала 2,4 м, это дает возможность получать изображения с оптическим разрешением порядка 0,1 угловой секунды.
Установленные приборы
В данном устройстве имеется 5 отсеков предназначенных для приборов. В одном из пяти отсеков долгое время находилась с 1993 по 2009 годы корректирующая оптическая система (COSTAR), она предназначалось для того, чтобы компенсировать неточность главного зеркала. Благодаря тому, что все приборы, которые были установленные, имеют встроенные системы коррекции дефекта, COSTAR демонтировали, а отсек стали использовать для установки ультрафиолетового спектрографа.
На момент отправки аппарата в космос, на нем были установлены следующие приборы:+
- Планетарная и широкоугольная камеры;
- Спектрограф высокого разрешения;
- Камера съемки и спектрограф тусклых объектов;
- Датчик точного наведения;
- Высокоскоростной фотометр.
Космическая рентгеновская обсерватория «Чандра»
Обсерватория «Чандра» — это телескоп, специально разработанный для обнаружения рентгеновского излучения из очень горячих районов Вселенной, таких как взорвавшиеся звезды, скопления галактик и материя вокруг черных дыр. Обсерватория получила свое имя в честь одного из крупнейших астрофизиков XX века Субрахманьяна Чандрасекара, известного своими работами о белых карликах. Входит в число Больших обсерваторий NASA.
Телескоп «Чандра»
(Фото: NGST)
Запуск состоялся 23 июля 1999 года. Предполагалось, что телескоп прослужит пять лет. В итоге «Чандра» стала самой продолжительной астрономической миссией без обслуживающих экспедиций.
На счету «Чандры» тысячи запечатленных космических объектов и явлений, которые помогли ученым лучше понять устройство нашей Вселенной и процессы, происходящие в ней. Телескоп показывает остатки взорвавшихся звезд, обнаруживает черные дыры по всей Вселенной, отслеживает отделение темной материи при столкновении галактик и многое другое.
Чем известна «Чандра»
Сделанный «Чандрой» первый снимок остатка сверхновой Кассиопея A показал астрономам загадочный источник в центре, который может быть быстро вращающейся нейтронной звездой или черной дырой.
Снимок остатка сверхновой Кассиопея A
(Фото: John Hughes et al. (Rutgers), NASA/CXC/SAO)
- В Крабовидной туманности получилось различить ударные волны вокруг центрального пульсара, незаметные другим телескопам.
- С помощью рентгеновской обсерватории «Чандра» ученые уточнили постоянную Хаббла — число, определяющее скорость расширения Вселенной.
- При столкновении сверхскоплений галактик были получены доказательства существования темной материи.
- Благодаря данным с телескопа ученые наблюдали крупнейшую из когда-либо обнаруженных рентгеновских вспышек сверхмассивной черной дыры в центре галактики Млечный Путь.
Сверхмассивная черная дыра Стрелец A * расположена в центре нашей галактики. По оценкам ученых, ее масса примерно в 4,5 млн раз больше массы нашего Солнца
(Фото: NASA)
- Снимки, показывающие сильно искаженный остаток сверхновой, названный W49B, позволили ученым предположить присутствие в нем самой последней черной дыры, образовавшейся в галактике Млечный Путь.
- В галактике M82 обнаружен новый тип черных дыр.
Следить за жизнью «Чандры» можно в , на YouTube-канале, а также в Instagram и .
ДОБАВЛЯЯ КРАСКИ
Портрет выше был сделан в 1911 году. Это один из первых примеров цветной фотографии, хотя в действительности он создан на основе трех черно-белых кадров, наложенных друг на друга. Русский химик и фотограф Сергей Прокудин-Горский сделал три идентичных снимка Алим-хана используя три фильтра для отдельных цветов света. Один позволял красному свету проходить в камеру, второй — зеленому и третий — синему. Увидеть эффективность такого простого метода можно просто взглянув на кадры снятые с красным и синим фильтром.
Обратите внимание, насколько яркой выглядит синяя одежда хана на фото справа. Это означает, что больше света синего цвета проходило через фильтр
Раскрашивание и комбинирование трех негативов позволяет нам увидеть следующее:
УЗКОПОЛОСНЫЙ СВЕТ
Наблюдение за объектом в том виде, каким он предстает перед нашими глазами — не единственный способ применения цвета. Ученые используют цвет для определения, как различные газы взаимодействуют в космосе для формирования галактик и туманностей.
Телескоп Хаббл способен делать снимки в очень узких спектрах света, исходящего от индивидуальных химических элементов, таких как кислород и углерод. Цвет позволяет выявлять их наличие на изображениях. Данный процесс называется «узкополосная фильтрация». Самое частое применение такой фильтрации полагается на изолированный свет водорода, серы и кислорода — три строительных блока звезд.
Самый известный пример фотографии, снятой при помощи узкополосной фильтрации Хабблом — «Столпы творения». На кадре видны невероятно огромные «колонны» газа и пыли в процессе формирования новых звездных систем.
Но это не так, как выглядит данная часть космоса, если смотреть глазами человека. Получившийся снимок скорее можно назвать раскрашенной картой.
Водород и сера в естественной среде находятся в красной части спектра. В то же время кислород ближе к зелено-синей части цветового спектра. Раскрашивая такие снимки согласно позиции в спектре мы получим: красный, красный и циан. В результате «Столпы» получатся такими:
Согласитесь, не очень удобно для визуального анализа. Чтобы получить полноцветный кадр и отделить водород от серы, ученые назначают элементам цвета согласно хроматическому порядку: красный, зеленый и голубой.
По сути это значит, что так как у кислорода самая высокая частота из трех, то ему назначают синий цвет. Несмотря на то, что водород — красный, его частота выше серы, поэтому его раскрашивают в зеленый. В результате мы получаем полноцветное изображение, изучая процесс, в котором могла зародиться и наша Солнечная система.
Нептун и его кольца
Последний раз детальные снимки Нептуна и его колец ученые получали в 1989 году, тогда в видимом диапазоне с близкого расстояния (4950 км) их сделал зонд «Вояджер-2». Спустя 33 года у астрономов появились более информативные фото планеты и ее колец.
Фото: NASA / Нептун и его спутники
Это фото NASA опубликовало 21 сентября 2022 года.
На снимке запечатлен Нептун, его кольца и 7 из 14 спутников. Самая яркая точка на фото — спутник Тритон, который, как предполагают ученые, был захвачен гравитацией Нептуна во времена ранней Солнечной системы. Из-за конденсированного азота Тритон отражает 70% падающего на него солнечного света, а в инфракрасном диапазоне спутник кажется ярче самой планеты, так как излучение поглощается метаном. Поэтому Тритон сияет на фото как звезда.
Рождение звезды
Здесь версии в полном разрешении
Хотите увидеть, как выглядело наше Солнце 4,5 миллиарда лет назад, когда было совсем малышом? Приблизительно как на фото выше.
Протозвезде L1527 всего 100 000 лет, её даже полноценным объектом ещё не назвать. По Земле уже ходили Homo Sapiens, когда её газ только начал накапливаться.
Самого светила, а точнее, его «зёрнышка» не видно, оно спрятано за чёрной линией прямо в центре реакции. Этот разделитель состоит из пыли и газа, которые в очень далёком будущем (около 2 миллиардов лет) превратятся в экзопланеты вроде Земли и Марса.
Что касается окраски, на самом деле газ однородного цвета, но верхняя его часть его выглядит оранжевым, потому что датчики телескопа улавливали излучение через стену пыли. Саму её не видно, но длину волны препятствие исказило. С другой стороны, синим он тоже не является, потому что часть холодного оттенка область тоже дошла до нас сквозь помехи, только менее плотного слоя.
Понимание того, как газ скапливается в одном месте, формируя звезду, или почему этого не происходит, стоит одной из главных задач обсерватории. Ради таких наблюдений и открытий телескоп Уэбба отчасти и запустили.
Характеристики
Изображения с высоким разрешением в видимом и ближнем инфракрасном свете показывают высокосимметричную компактную биполярную туманность с X-образными шипами, которые подразумевают анизотропную дисперсию околозвездного вещества. Центральная двойная система полностью скрыта от прямого света.
Красный прямоугольник, как известно, особенно богат полициклические ароматические углеводороды (ПАУ). Присутствие таких углеродсодержащих макромолекул в X-образном компоненте туманности, в то время как экваториальные области, как известно, содержат богатые силикатом (O-содержащие) частицы пыли, было интерпретировано как следствие изменения соотношения содержания O / C первичная звезда во время ее поздней эволюции. Однако ПАУ могут также образовываться в результате развития центральной области фотонной диссоциации, области, в которой проявляется очень активная химия из-за диссоциации стабильных молекул УФ-излучением центральной звездной системы. Красный прямоугольник был первой туманностью вокруг эволюционировавшей звезды, в которой был хорошо идентифицирован вращающийся экваториальный диск (существование таких дисков было продемонстрировано только у некоторых из этих объектов, только у большинства из них наблюдается расширение). Однако диск поглощает звездный свет и практически не виден на красивом оптическом изображении, которое в основном представляет собой относительно диффузный поток, который, скорее всего, образован материалом, извлеченным из более плотного диска. Четкие ступеньки предполагают несколько эпизодов увеличения скорости выброса.
Красный прямоугольник — протопланетарная туманность.
Космический телескоп Хаббла обнаружил множество новых особенностей в красном прямоугольнике, которые нельзя увидеть с помощью наземных телескопов, просматривающих турбулентную атмосферу Земли. Происхождение многих особенностей этой умирающей звезды, в частности ее X-образного изображения, до сих пор остается скрытым или даже совершенно загадочным. Наличие заметной биполярной симметрии характерно для протопланетных и планетарных туманностей. Теоретики, как Ноам Сокер, Винсент Ике , Адам Франк и др., показали, что эта осевая симметрия может возникать в результате ударных воздействий из-за взаимодействия различных фаз звездных ветров (характерных для поздней звездной эволюции), но ее происхождение все еще обсуждается. С другой стороны, Х-образная форма и низкая скорость истекающего газа в красном прямоугольнике являются своеобразными, вероятно, потому, что его происхождение (связанное со стабильным протяженным диском) отличается от происхождения большинства протопланетных туманностей.
Ссылки
- ^ Результаты для красного прямоугольника , SIMBAD , Centre de données astronomiques de Strasbourg , 7 января 2007 г.
- ^ Меньщиков А.Б.; Шертл, Д.; Тутхилл, П.Г.; Вайгельт, Г.; и другие. (2002), «Свойства тесного двойного и циркумбинарного тора Красного прямоугольника», Астрономия и астрофизика , 393 : 867–885, arXivastro-ph/0206189 , Bibcode2002A&A…393..867M , doi10.1051/0004-6361:20020859
- Бритт, Роберт Рой (6 апреля 2007 г.). «Тайна красного космического свечения раскрыта» . Space.com . Проверено 29 апреля 2016 г. .
- Коэн, М .; Андерсон, см; Койн, Г.В.; и другие. (февраль 1975 г.). «Пекулярный объект HD 44179 «Красный прямоугольник»«. Astrophysical Journal . 196 : 179. Бибкод1975ApJ…196..179C . doi10.1086/153403 .
- Рассел, РВ; Сойфер, Б, Т .; Вилнер, С.П. (март 1978 г.). «Инфракрасные спектры CRL 618 и HD 44179». Астрофизический журнал . 220 : 568. Бибкод1978ApJ…220..568R . дои10.1086/155937 .
- Мията, Т .; КатазаХ.; Окамото, Ю.К., Х.; Окамото, Ю.К.; и другие. (февраль 2004 г.). «Субсекундные изображения и спектроскопические наблюдения красного прямоугольника в N-диапазоне» . Астрономия и астрофизика . 415 : 179. Бибкод2004A&A…415..179M . doi10.1051/0004-6361:20034601 .
- Кава, И. Галлардо; Буджаррабал, В.; Алколеа, Дж.; Гомес-Гарридо, М.; Сантандер-Гарсия, М. (01 марта 2022 г.). «Химия туманностей вокруг двойных звезд post-AGB: молекулярный обзор линий миллиметрового диапазона» . Астрономия и астрофизика . 659 : А134. doi10.1051/0004-6361/202142339 . ISSN 0004-6361 .
- Уотерс, LBFM; Ками, Дж.; де Йонг, Т .; и другие. (февраль 1998 г.). «Богатый кислородом пылевой диск, окружающий проэволюционировавшую звезду в красном прямоугольнике». Природа . 391 : 868. Бибкод1998Natur.391..868W . дои10.1038/36052 .
- Буджаррабал, В .; Кастро-Карризо, А .; Алколеа, Дж.; Нери, Р. (октябрь 2005 г.). «Орбитальный газовый диск в красном прямоугольнике» . Астрономия и астрофизика . 441 : 1031. Бибкод2005A&A…441.1031B . doi10.1051/0004-6361:20053118 .
- Буджаррабал, В .; Кастро-Карризо, А .; Алколеа, Дж.; и другие. (сентябрь 2013 г.). «ALMA наблюдения красного прямоугольника, предварительный анализ». Астрономия и астрофизика . 557 : L11. архив1307.5959 . Бибкод2013A&A…557L..11B . doi10.1051/0004-6361/201322232 .
- Балик, Брюс; Фрэнк, Адам (2002). «Формы и формирование планетарных туманностей». Ежегодный обзор астрономии и астрофизики . 40 : 439. Бибкод2002ARA&A..40..439B . doi10.1146/annurev.astro.40.060401.093849 .
Самое четкое изображение Вселенной
12 июля 2022 года NASA опубликовало первое фото, сделанное «Уэббом». Этот снимок – «самое глубокое и четкое инфракрасное изображение далекой Вселенной» из всех существующих на сегодняшний день.
Фото: NASA/ESA/CSA/STScI / Самое глубокое и четкое инфракрасное изображение далекой Вселенной
На снимок попало скопление галактик SMACS 0723, которое запечатлено таким, каким оно было 4,6 млрд. лет назад.
Этот снимок – мозаика, полученная путем объединения фотографий, которые были сделаны на разных длинах волн в течение 12,5 часов.
Смотрите нас на youtube, читайте в Telegram. Следите за всем новым и интересным из мира науки на нашей страничке в Google Новости
Значение в культуре человечества
Ценность работы телескопа Хаббл столь велика, что он перестал быть сугубо научным достижением, давно став культурным явлением, часто появляясь в кино и других видах искусства в разных ипостасях:
- Голливуд не мог пройти мимо истории с зеркалом, и в фильме «Голый Пистолет 2 с половиной» 91-го года его изображение можно заметить в сцене вечерней депрессии лейтенанта Фрэнка Дребина среди фотографий главных катастроф века.
- Упоминание телескопа можно встретить в масштабном фантастическом фильме «Армагеддон» 98-го года, где именно Хаббл делает первые снимки огромного метеорита, летящего к Земле.
- Одно из первых заметных появлений полученных телескопом снимков в массовой культуре — четвертый сезон сериала Стар Трек Вояджер в 97-м году.
- Хаббл много снимается в кино и на телевидении, и перечислять все фильмы с его участием слишком долго. Одним из самых красивых применений фотографий телескопа, помимо документальных, можно назвать Контакт 97-го года с Джоди Фостер. Также завязка недавней Гравитации происходит во время ремонтной миссии на Хаббле.
- Из неожиданных применений наследия Хаббла: меметичные космические леггинсы. Ну и в качестве принтов для одежды в целом.
Видео
Источники
- https://ru.wikipedia.org/wiki/Хаббл_(телескоп)https://spacegid.com/orbitalnyiy-teleskop-imeni-edvina-habbla.htmlhttps://habr.com/ru/post/410735/https://www.bbc.com/russian/science/2015/04/150423_hubble_silver_jubiliehttps://habr.com/ru/post/410735/https://gagadget.com/science/18432-15-samyih-izvestnyih-fotografij-teleskopa-habbl/
Паутина из Очень странных дел
Фото Хаббла
В 29 миллионах световых лет от нас есть красивая спиральная галактика IC 5332, сильно напоминающая Млечный Путь своими изящными рукавами. На фото выше видно, как она выглядит в видимом спектре, когда её снял телескоп Хаббл. То же самое можно увидеть, глядя оттуда на нас.
Помните, я говорил, что космос не такой уж и чёрный, просто наши глаза не всё воспринимают?
Вот так выглядит IC 5332, если посмотреть на её инфракрасное излучение. Не иначе как Изнанка.
Фото Уэбба. Здесь версии в полном разрешении
Жуткая паутина, которая буквально существует там же, где и нормальный видимый спектр света. И самое невероятное, в нашей Галактике всё устроено точно так же.
Да, спираль всё ещё видно, но она разрастается паутиной излучения, которое видно только на среднем инфракрасном излучении. Красные точки (звёзды) при этом тоже не все были видны, потому что Хаббл не смог их сфотографировать. Он для этого не получает достаточного охлаждения.
Те серебристые листы на дне Уэбба как раз и помогают ему охладится до такой степени, чтобы датчики запечатлели подобные изображения.
RED GREEN BLUE
Взгляните на картинку выше. Это весь свет во вселенной, который мы с вами можем видеть. Это мизерная доля спектра электромагнитного излучения и большинство частот невидимы нашему глазу. Тот свет, что доступен восприятию человека начинается с красного в самой длинной части волны и заканчивается фиолетовым на самой короткой частью волны. Все это — видимый спектр.
Человек воспринимает свет в видимом спектре благодаря клеткам в наших глазах — конусам, которые интерпретируют отражаемый от объектов свет. В глазах человека расположено три типа конусов, восприимчивых к длинным, средним и коротким электромагнитным волнам. Если переводить их в цвет, то приблизительно эти частоты можно отнести к красному, зеленому и синему в видимом спектре.
Красный, зеленый и синий — главные цвета. Все остальные цвета — результат комбинации этого трио. Данная комбинация стала ключевым принципом в деле раскрашивания черно-белых фотографий.
ПРЕДСТАВЛЕНИЕ ЦВЕТОВ
Космический телескоп Хаббл способен «видеть» свет и за пределами видимого спектра — в ближнем инфракрасном и ультрафиолетовом диапазоне.
Рассматривая те же Столпы творения, в инфракрасном спектре кадр будет выглядеть совсем иначе. Длинные волны преодолевают облака газа и пыли, блокирующие свет в видимом спектре, представляя группы звезд как внутри «Столпов», так и за их пределами.
Кадры, отражающие невидимый свет, раскрашиваются похожим образом. Снимки в различных диапазонах получают световое кодирование на основе хроматического порядка — низкие частоты становятся красным, высокие — синим.
Подобные манипуляции восприятием могут вызвать вопрос — а реален ли цвет? Ответ прост: и да, и нет.
Цвет отражает реальные данные и используется для визуализации химического состава объекта или области космоса, помогая ученым выяснять, как газы за тысячи световых лет от нас взаимодействуют друг с другом. Это критическая информация, благодаря которой мы можем строить модели формирования галактик и звезд. Даже если с технической стороны для нас космос не выглядит таким образом, результаты наблюдений и съемки не выдуманы.
Цвет помогает нам видеть не только красивые картинки, но и отражает невидимые нашему глазу части вселенной.
Материал основан на ролике Vox.
ШИРОКИЙ СПЕКТР
Пришло время вернуться в космос. Космический телескоп «Хаббл» находится на орбите Земли с 90-го года прошлого века, позволяя нам заглядывать в далекие уголки вселенной и представляя подобные изображения:
Трюк в том, что каждый цветной кадр начинает свою жизнь черно-белым. Связано это с тем, что главная функция телескопа в измерении яркости света, отражаемого объектами в космосе. Четче всего такие кадры получаются в черно-белом виде. Цвета добавляются позже, подобно портрету Алим-хана, за тем исключением, что ученые используют специфические программы, подобные Photoshop.
Давайте используем этот снимок Сатурна для разбора:
Фильтры разделяют свет на длинные, средние и короткие волны. Процесс называется «широкополосная фильтрация», так как нацелен на широкие диапазоны спектра. После этого каждый черно-белый кадр получает свой цвет, в зависимости от позиции в видимом спектре.
Комбинированный результат позволяет увидеть истинное изображение, если бы наши глаза были сопоставимы с Хабблом по мощности.
То же можно проделать и на примере Юпитера
Обратите внимание, как комбинирование красного и зеленого создает желтый, а появление синего фильтра вводит бирюзовый и пурпурный для представления всего спектра
Пришло время добавить еще один уровень сложности.
Управление
Управляется и контролируется телескоп в реальном времени 24/7 из центра управления в городе Гринбелт в штате Мэриленд. Задачи центра делятся на два вида: технические (обслуживание, управление и мониторинг состояния) и научные (выбор объектов, подготовка задач и непосредственно сбор данных). Еженедельно Хаббл получает с Земли более 100 000 разных команд: это корректирующие орбиту инструкции, и задания на съемку космических объектов.
Хаббл — телескоп занятой, но даже его плотный график позволяет помочь совершенно любому, даже непрофессиональному, астроному. Ежегодно в Институт Исследований Космоса с Помощью Космического Телескопа поступает по тысяче заявок на бронирование времени от астрономов из разных стран. Около 20% заявок получают одобрение экспертной комиссии и, по данным НАСА, благодаря международным запросам проводится плюс-минус 20 тысяч наблюдений ежегодно. Все эти заявки стыкуются, программируются и отправляются Хабблу из все того же центра в Мэриленде.
Осложняющие факторы в работе телескопа
- Поскольку телескоп находится на низкой орбите, что необходимо для обеспечения обслуживания, значительная часть астрономических объектов затемнена Землёй чуть меньше половины всего времени.
- Из-за повышенного уровня радиации наблюдения невозможны, когда телескоп пролетает над Южно-Атлантической аномалией.
- Минимально допустимое отклонение от Солнца составляет около 50° для предотвращения попадания прямого солнечного света в оптическую систему, что, в частности, делает невозможными наблюдения Меркурия, а прямые наблюдения Луны и Земли ограничены.
- Так как орбита телескопа проходит в верхних слоях атмосферы, плотность которых меняется с течением времени, невозможно точно предсказать местоположение телескопа. Ошибка шестинедельного предсказания может составлять до 4 тыс. км. В связи с этим, точные расписания наблюдений составляются всего на несколько дней вперёд, чтобы избежать ситуации, когда выбранный для наблюдения объект будет не виден в назначенное время.