9 класс

Что случилось во время выхода в космос космонавтов Сергея Рыжикова и Сергея Кудь-Сверчкова

По сообщению пресс-службы «Роскосмоса», 18 ноября 2020 года при выходе в открытый космос космонавтов Сергея Рыжикова и Сергея Кудь-Сверчкова, в открытый космос улетел, к счастью, не человек, а запчасть в виде мягкого поручня от гермоконтейнера.

По словам собеседника, космонавты как раз покидали модуль «Поиск», когда эта деталь отделилась от гермоконтейнера с необходимой космонавтам для работы ношей и отправилась в свободное плавание по космическим просторам.

Инцидент с мягким поручнем на работу космонавтов никак не повлиял и программу деятельности вне корабля никак не нарушил, сообщили представители госкорпорации.

В среду, 18 ноября 2020 года, россияне Сергей Рыжиков и Сергей Кудь-Сверчков вышли в открытый космос для выполнения ряда подготовительных работ, в ожидании прибытия другого модуля Роскосмоса – «Наука».

Космонавты проверили модуль «Поиск» на герметичность, осуществили замену сменной панели, регулирующей расход жидкости модуля «Заря», и провели некоторые научные эксперименты. Кроме того, Рыжикову и Кудь-Сверчкову пришлось провести в космосе «уборку» – наружную чистку иллюминатора на модуле «Звезда».

В общей сложности все работы заняли у космонавтов 5 часов и 33 минуты. Следующий выход космонавтов в открытый космос запланировали на февраль 2021 года. Всего же в ожидании «Науки» будет сделано 10 выходов.

Ранее в космос космонавты выходили в 2019 году 29 мая. Это были Алексей Овчинин и Олег Кононенко, которые работали в открытом космосе примерно 6 часов.

Основные мифы, развенчать или подтвердить которые мы намерены

Нередко бывает, смотришь в компании сериал типа «Экпансии» или той же «Сотни», где человеку приходится на время оказаться в безвоздушном космическом пространстве без скафандра, и слышишь нравоучительные комментарии друзей:

  • Да у него бы глаза лопнули от перепада давления!
  • Да у него тело раздует и изорвет внутренним давлением!
  • Да у него бы кровь закипела!
  • Да он бы через секунду в кусок льда бы превратился!
  • Да он бы изжарился на Солнце!
  • Да он бы от радиации сгорел!

Эти и прочие высказывания мы и подвергнем исследованию, объясняя при этом ход своих мыслей самыми простыми, понятными каждому, словами. И начнем, пожалуй, с «абсолютного холода».

Как распространяются световые и звуковые волны?

Итак, верхний предел скорости звука, согласно новым расчетам, составляет 36 километров в секунду, что примерно в два раза превышает скорость передачи звука через алмаз. Звук и свет путешествуют как волны, но ведут себя немного по-разному. Так, скорость звука определяется упругостью и плотностью среды, в газах и жидкостях она меньше, в твердых телах — больше. А вот в вакууме звуковые волны распространяться не могут, так как там нечему колебаться.

Видимый свет – это разновидность электромагнитного излучения, названного так главным образом потому, что световые волны состоят из колеблющихся электрических и магнитных полей. Эти поля генерируют самоподдерживающуюся электромагнитную волну, которая может перемещаться в вакууме – и ее основная скорость составляет около трехсот тысяч километров в секунду. А вот путешествие через среду, такую как вода или атмосфера, замедляет ее.

Представьте себе механическую волну, которая вызвана вибрацией в среде. Когда волна проходит через среду, молекулы этой среды сталкиваются друг с другом, передавая энергию по ходу движения. Следовательно, чем жестче среда и чем сложнее ее сжать – тем быстрее распространяется звук. В жестком надежном материале, как алмаз, звук может путешествовать еще быстрее.

В жидкостях, в том числе в воде, звук мчится в 4 с лишним раза быстрее, чем в воздухе.

Авторы нового исследования отмечают, что сейсмологи, например, используют звуковые волны, вызванные землетрясениями глубоко в недрах земли, чтобы понять характер сейсмических событий и внутреннее строение земли. Они также представляют интерес для материаловедов, потому что определяют упругие свойства материалов, их способность противостоять нагрузкам. Все вышеперечисленное означает, что существует определенная проблема с тем, чтобы установить ограничение скорости звука во Вселенной. Так как же исследователям это удалось?

Волновая природа звуков

Основана на уплотнении молекул среды при колебании тел в ней.

Впервые обоснована немецким ученым Германом Гельмгольцем в конце XIX в.

Что такое звуковые волны

Вследствие колебательных движений в различных средах периодически повышается давление в отдельно взятой точке. Оно передается на соседние частицы и далее по цепочке. В результате наблюдается чередование участков повышенного и пониженного давления, т. е. областей сжатия и разрежения. В них колеблется каждая частица среды.

Звуковые волны получаются в результате колебательных движений.

Непрерывная поверхность колебаний образует фронт с несколькими типами сигналов.

Плоские волны

Если размеры фронта в несколько раз превышают длину волны звука, то последнюю называют плоской. Она может распространяться на большое расстояние от своего источника.

Сферические волны

В тех случаях, когда источник звука точечный и его размеры намного меньше длины излучаемых сигналов, рассматривают их сферическую разновидность.

Свойства гармонических волн

В ответ на гармоническое воздействие возникает отклик – гармоническая волна. Она изменяется по закону синуса или косинуса, распространяется линейно.

Звуковые колебания такого типа характеризуются:

  1. Громкостью. При высокой амплитуде колебаний звучание получается громким, при низкой – тихим.
  2. Высотой. Она зависит от частоты колебаний. Так например, при пении басом голосовые связки колеблются медленно, сопрано – в несколько раз быстрее.

Гармоническая волна распространяется линейно.

Характеристики продольных и поперечных волн

Различия представлены в таблице:

Характеристики Место возникновения Направления колебания частиц и продвижения Скорость распространения Способность к поляризации
Продольные Жидкости и газы Совпадают Большая Нет
Поперечные Твердые тела Перпендикулярны Меньше Есть

Скорости, необходимые для выхода в ближний и дальний космос

Для того чтобы выйти на орбиту, тело должно достичь определённой скорости. Космические скорости для Земли:

  • Первая космическая скорость — 7,9 км/с — скорость для выхода на орбиту вокруг Земли;
  • Вторая космическая скорость — 11,1 км/с — скорость для ухода из сферы притяжения Земли и выхода в межпланетное пространство;
  • Третья космическая скорость — 16,67 км/с — скорость для ухода из сферы притяжения Солнца и выхода в межзвёздное пространство;
  • Четвёртая космическая скорость — около 550 км/с — скорость для ухода из сферы притяжения галактики Млечный Путь и выхода в межгалактическое пространство. Для сравнения, скорость движения Солнца относительно центра галактики составляет примерно 220 км/с.

Если же какая-либо из скоростей будет меньше указанной, то тело не сможет выйти на соответствующую орбиту (утверждение верно лишь для старта с указанной скоростью с поверхности Земли и дальнейшего движения без тяги).

Первым, кто понял, что для достижения таких скоростей при использовании любого химического топлива нужна многоступенчатая ракета на жидком топливе, был Константин Эдуардович Циолковский.

Скорости разгона космического аппарата при помощи одного только ионного двигателя для вывода его на земную орбиту недостаточно, но для движения в межпланетном космическом пространстве и маневрирования он вполне подходит и используется достаточно часто.

Перегреется ли человек на Солнце в вакууме?

В продолжении темы выше подтвердим, что материальное тело, выброшенное в космический вакуум на близком расстоянии от звезды, реально имеет все шансы, наоборот, изжариться, нежели замерзнуть.

Но все будет зависеть от удаленности объекта от светила. К примеру, наши космонавты, выходящие на плановые работы в открытый космос из МКС, больше рискуют именно получить перегрев, чем переохлаждение.

В любом случае, если тело будет постоянно вращаться, поворачиваясь к светилу то одной стороной, то другой, переохлаждения, равно как и перенагрева, можно и не получить. Все будет зависеть от параметров вращения и дальности нахождения от звездного светила. Ведь ясно, что тело, находящееся на большем расстоянии от Солнца, будет нагреваться меньше, чем то, что находится в непосредственной его близи.

Посему выходит, что если происшествие будет иметь место на большом расстоянии от светила или вовсе за пределами Солнечной системы, перегрев это не то, от чего человек умрет в первую очередь.

Мультивселенная

Согласно этой теории, охватываемый Универсум — это лишь один мир, а их существует великое множество. Они созданы из первичной материи при Большом взрыве, после чего развивались по собственному эволюционному сценарию, какие-то из них умирали, и на их место приходил новые миры. Этого предположения придерживался известный физик Стивен Хокинг из Британии, а также Нил Тайсон, Брайан Грин, Алан Гут.

Многомировая интерпретация Эверетта гласит, что в каждом из таких миров работают одни и те же природные закономерности, но они находятся на разных стадиях развития. При этом все миры параллельны, они могут изредка встречаться в каких-то точках соприкосновения, но в целом развиваются автономно.

Данная теория может оказаться правдивой, но сейчас она скорее философская, чем научная. Ученые не могут подтвердить или опровергнуть доводы, проведя эксперимент. Но если сторонники правы, то у нашей Вселенной есть пределы, и ей отведен определенный срок существования.

if(typeof ez_ad_units!=’undefined’){ez_ad_units.push([[728,90],’lambdageeks_com-box-3′,’ezslot_10′,861,’0′,’0′])};__ez_fad_position(‘div-gpt-ad-lambdageeks_com-box-3-0’);Законы отражения звуковых волн:

𝛉i =𝛉r

Где, 𝛉i = Угол падения

             𝛉r = угол отражения

Плоскость, от которой отражается звук, будет такой же, как и плоскость, от которой исходит падающий и нормальный звук.

В результате мы можем сделать вывод, что световые и звуковые волны подчиняются одним и тем же законам отражения. 

Отличие в том, что для отражения звука, в отличие от света, не обязательно иметь полированную поверхность. Звук может отражаться и от любой шероховатой поверхности. Таким образом, требуется, чтобы любая поверхность или препятствие отражались обратно. Кроме того, на отражение звука влияет форма поверхности, от которой отражается звук.

Давайте подумаем об иллюстрации:

Допустим, вы бросаете мяч в стену, и он отскакивает обратно к вам. Теперь, когда вы освещаете стену факелом, вы испытываете явление отражения света. То же самое происходит, когда вы говорите близко к стене — вы слышите то, что только что сказали. Да, ваше предположение верно; это не что иное, как отражение звука.

Когда вы говорите, возникают звуковые волны, а когда вы слышите их в ответ, звуковые волны слышимой частоты отражаются обратно от поверхности стены. В результате отражение звука отвечает за то, чтобы вы слышали собственный звук.

Теперь давайте рассмотрим с разных поверхностей.

Стоячие волны

Если 2 волны с одинаковыми амплитудой, фазой и частотой движутся в противоположных направлениях, то при встрече они образуют 1 стоячую. На этом месте появляются чередующиеся участки максимумов амплитуд (зоны сложения или «пучности») и минимумов (зоны вычитания или узлы).


Звуки, которые движутся в противоположных направлениях, образуют стоячую волну.

В таком сигнале энергия не изменяется, т. к. переносится в равном количестве прямо и обратно.

Рассматриваемое явление влияет на акустическое восприятие игры музыкальных инструментов: в узлах басы почти не слышны, в «пучностях» звучат очень насыщенно.

В струне

Натянутая музыкальная струна генерирует поперечные колебания, а сама утрачивает первоначальное положение.

Колеблющаяся вибрирует закрепленными неподвижно концами и производит основной тон. Он состоит из комбинации стоячих волн. Их узлы находятся на зафиксированных концах.

Кроме того, вибрации в струне возникают в нескольких местах. При этом струна оказывается как бы разделена на равные части. Каждая из них тоже колеблется с образованием своих сигналов и производит дополнительные тоны меньшей амплитуды.

В духовых инструментах

Теория звука в струне применима к духовому музыкальному инструменту. Последний можно упрощенно представить в виде прямой трубы, в которой образуются стоячие волны. У открытого конца находится «пучность», у закрытого – узел.


В духовых инструментах применяется теория звука.

Какие объекты вращаются вокруг нашей планеты?

В первую очередь это техника, запущенная людьми.

По низкой околоземной орбите, высотой от 160 до 2000 километров, двигаются аппараты дистанционного зондирования, межпланетная космическая станция (МКС).

На более удаленной, геостационарной орбите, ее высота примерно 36 тысяч километров над поверхностью планеты, “зависают” спутники прямого вещания телевизионных программ и различных систем связи.

На самом деле спутники двигаются с очень большой линейной и угловой скоростью, успевая за вращением Земли, поэтому каждый находится над своей точкой планеты — как бы висят над ней.

Помимо этого на орбитах находится различный “космический мусор”.

Отражение звуковых волн от более разреженной среды:

Подумайте о продольной звуковой волне, которая проходит через более плотную или твердую среду и сталкивается с поверхностью раздела или границей более разреженной среды. Когда сжатие падающей звуковой волны сталкивается с границей из более разреженного материала, к этой поверхности прикладывается сила. Поскольку поверхность более разреженной среды имеет меньшее сопротивление, а сжатие звуковой волны содержит высокое давление, граница более разреженной среды будет отодвинута назад. 

В отличие от более плотных сред, частицы в более разреженных средах могут свободно мигрировать. Поэтому на пересечении двух сред возникает разрежение. Следовательно, падающее сжатие возвращается в виде разрежения после отражения от поверхности более разреженного материала. В результате не замечается изменение фазы при отражении звуковой волны от более плотной среды от более разреженной среды. 

То же самое произойдет, если разрежение произойдет на поверхности более разреженной среды и отразится обратно в виде сжатия.

В качестве иллюстрации представьте, что звук проходит по трубе, наполненной водой. Теперь представьте, что на открытом конце трубы присутствует воздух. А мы уже знаем, что вода является более плотной средой для звука, чем воздух. В результате высокое давление заставляет молекулы воздуха в окружающей среде быстро удаляться, когда происходит сжатие на границе раздела вода-воздух. В результате сжатие будет преобразовано в разрежение перед отражением.

Природа грома

Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.

Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.

Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:

  • Гром — это сотрясение воздуха, образующее звук
  • Он происходят благодаря тому, что молния проходит от облака к облаку или от облака к земле.
  • Если нет эха, то мы слышим просто единичный удар грома, соответствующий одной мгновенной причине, производящей его
  • Когда же мы слышим раскаты грома, мы просто слышим эхо одного и того же удара, отражающегося много раз от облаков к земле

Молния

Распространение звуковых волн

Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.

Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.

Распространение звука на большие расстояния

Низкочастотные звуковые волны в океане распространяются на исключительно большие расстояния. Этому способствует малое затухание низкочастотных звуковых волн в воде, а также наличие в глубоком океане акустического волновода — подводного звукового канала. Американские ученые провели интересный опыт, получив горизонтальный разрез звукового поля в Атлантике на частотах 14 Гц и 111 Гц до расстояния 2800 км от излучателя. Еще раз подтвердилось, что распределение интенсивности звукового поля крайне неоднородно. Зоны высокой интенсивности (они называются зонами конвергенции из-за сильной концентрации звуковых лучей в них) чередуются с зонами акустической тени. Расстояние от одной зоны конвергенции до другой составляет в Центральной Атлантике 66 км. Для частоты 14 Гц такие зоны прослеживались до 2400 км, для 111 Гц — до 1700 км. В опыте обнаружилось и другое очень интересное явление.

Интенсивность звука в верхних слоях океана начиная с 700 км и далее в среднем не уменьшалась с увеличением расстояния вплоть до максимального. Этот факт объясняется тем, что структура океанских вод при продвижении на такие расстояния изменяется. В данном случае это изменение сводилось к тому, что глубина залегания оси звукового канала при удалении от источника постепенно уменьшалась — происходило некоторое повышение концентрации звуковой энергии в верхних слоях.

Переутомление

Космический скафандр весит около 160 килограмм. Конечно, в безвоздушном пространстве космоса он не весит ничего, но, тем не менее, он очень громоздкий и работать в нем крайне затруднительно. Вот что рассказывает об этом канадский астронавт Крис Хэдфилд:

«Если вы ткнете пальцем в человека, одетого в скафандр НАСА, у вас возникнет ощущение, что вы давите на волейбольный мяч: у материала точно такая же жесткость. При каждом движении вы вынуждены преодолевать упругое сопротивление. Поэтому вы возвращаетесь с космической прогулки совершенно физически измотанными, иногда с кровавыми мозолями, и все из-за скафандра, работать в котором — одно сплошное мучение».

Кроме того, в невесомости многие действия, кажущиеся элементарными на Земле, требуют значительных физических усилий. Например, нельзя просто зависнуть в нужном месте и открутить гайку с помощью ключа. Вы крутите гайку в одном направлении, а в это время ваше тело начинает вращаться в противоположном. Приходится прилагать в несколько раз больше усилий и делать все очень аккуратно и очень медленно. Приходится прилагать усилия даже просто для того, чтобы оставаться на одном месте. Еще любой работе предшествует длительный этап подготовки к ней: достичь нужной точки, закрепиться там, подготовить необходимые инструменты.

Когда человек устает, вероятность того, что он допустит ошибку, значительно возрастает. В условиях открытого космоса даже маленькая оплошность может быть чревата огромными проблемами.

Что такое эхо?

Когда звуковые волны встречают на пути твердую преграду, например
утес, часть из них проходит сквозь нее. Другие же отскакивают назад,
подобно морским волнам, разбивающимся об утес.

При этом звуковые волны устремляются через воздух обратно к
первоначальному источнику звука. В таких случаях вы вновь слышите тот
же звук, на этот раз в виде эха. Лучшее эхо бывает от коротких и
громких звуков.

Рыболовные суда обнаруживают косяки рыб при помощи высоких звуков,
распространяемых ими в толще воды. Натыкаясь на скопление рыб, эти
звуки отражаются от них, а бортовой компьютер фиксирует эхо и по нему
определяет местонахождение косяка.

Звуковые волны

1. Важным видом продольных волн являются звуковые волны. Так называются волны с частотами 17 – 20000 Гц. Учение о звуке называется акустикой. В акустике изучаются волны, которые распространяются не только в воздухе, но и в любой другой среде. Упругие волны с частотой ниже 17 Гц называются инфразвуком, а с частотой выше 20000 Гц – ультразвуком.

Звуковые волны – упругие колебания, распространяющиеся в виде волнового процесса в газах, жидкостях, твердых телах.

2. Избыточное звуковое давление. Уравнение звуковой волны.

Уравнение упругой волны позволяет вычислить смещение любой точки пространства, по которому проходит волна, в любой момент времени. Но как говорить о смещении частиц воздуха или жидкости от положения равновесия? Звук, распространяясь в жидкости или газе, создает области сжатия и разряжение среды, в которых давление соответственно повышается или понижается по сравнению с давлением невозмущенной среды.

Если — давление и плотность невозмущенной среды (среды, по которой не проходит волна), а — давление и плотность среды при распространении в ней волнового процесса, то величина называется избыточным давлением. Величина есть максимальное значение избыточное давление (амплитуда избыточного давления).

Изменение избыточного давления для плоской звуковой волны (т.е. уравнение плоской звуковой волны) имеет вид:

,

где y – расстояние от источника колебаний точки, избыточное давление в которой мы определяем в момент времени t.

Если ввести величину избыточной плотности и ее амплитуды так же, как мы вводили величину избыточного звукового давления, то уравнение плоской звуковой волны можно было бы записать так: . 3. Объективные и субъективные характеристики звука.

Само слово “звук” отражает два различных, но взаимосвязанных понятия: 1)звук как физическое явление; 2)звук – то восприятие, которое испытывает слуховой аппарат (человеческое ухо) и ощущения, возникающие у него при этом. Соответственно характеристики звука делятся на объективные, которые могут быть измерены физической аппаратурой, и субъективные, определяемые восприятием данного звука человеком.

К объективным (физическим) характеристикам звука относятся характеристики, которые описывают любой волновой процесс: частота, интенсивность и спектральный состав. В таблицу 3 включены сравнительные данные объективных и субъективных характеристик.

Таблица 3.

Субъективные Характеристики Объективные характеристики
Высота звука Высота звука определяется частотой волны
Тембр (окраска звука) Тембр звука определяется его спектром
Громкость (сила звука) Сила звука определяется нтенсивностью волны (или квадратом ее амплитуды)

Остановимся на некоторых определениях.

Частота звука измеряется числом колебаний частиц среды, участвующих в волновом процессе, в 1 секунду.

Интенсивность волны измеряется энергией, переносимой волной в единицу времени через единичную площадь (расположенную перпендикулярно направлению распространению волны).

Спектральный состав (спектр) звука указывает из каких колебаний состоит данный звук и как распределены амплитуды между отдельными его составляющими.

Различают сплошные и линейчатые спектры. Для субъективной оценки громкости используются величины, называемые уровнем силы звука и уровнем громкости. Все акустические величины и их размерности в СИ приведены в приложении.

Исследования

Люди начали физическое исследование космоса в течение 20-го века с появлением высотных полетов на воздушном шаре, а затем пилотируемых ракетных запусков.

Земная орбита была впервые достигнута Юрием Гагариным из Советского Союза в 1961 году, а беспилотные космические аппараты с тех пор добрались до всех известных планет Солнечной системы.

Из-за высокой стоимости полёта в космос, пилотируемый космический полет был ограничен низкой земной орбитой и Луной.

Космическое пространство представляет собой сложную среду для изучения человека из-за двойной опасности: вакуума и излучения. Микрогравитация также отрицательно влияет на физиологию человека, которая вызывает, как атрофию мышц, так и потерю костной массы. В дополнение к этим проблемам здравоохранения и окружающей среды, экономическая стоимость помещения объектов, в том числе людей, в космос очень высока.

Насколько холодно в космосе? Может быть температура еще ниже?

Температуры в разных точках вселенной

https://youtube.com/watch?v=c4hwWG8-sRk

О лопающихся глазах, сосудах, кишечнике и прочих внутренних органах

Поскольку все жидкости и воздух, находящиеся в нашем теле, постоянно находятся под воздействием внутреннего и внешнего (в 1 атмосферу) давления, коим внутреннее уравновешивается, было бы неправильным сказать, что при исчезновении наружного давления наши ткани не начнут разбухать.

Конечно, начнут. Но не в том летальном варианте, который описывают нам наши несведущие друзья. Дело в том, что стенки наших внутренних органов, сосудов, клеток, как, в принципе, и сама кожа, эластичны и крепки, и им по силам будет выдержать внутреннее давление при отсутствии внешнего. Да, сердце продолжит функционировать в том же режиме, а, при стрессе, еще и в удвоенном, а потому сосуды наши, как и ткани, все больше будет раздувать от внутреннего давления.

Но перепад всего в 1 атмосферу это не тот случай, который может их порвать. Если раздувшееся тело человека успеют выудить из безвоздушного пространства пока он не помер от удушья, эта «изнутридавленческая опухоль» быстро спадет и все у него придет в норму. В любом случае, если человек и умрет в космическом вакууме, то точно не из-за того, что его «изорвало в тряпку» внутренним давлением.

Гораздо хуже будет, приспособившись к давлению в 1000 атмосфер, как гигантская акула в фильме «Мег: монстр глубины», резко всплыть до давления в 1 атмосферу. Здесь тело акулы разорвало бы еще на начальных стадиях подъема с глубины. Именно из-за этого данный фильм является полнейшей чушью и бредом.

Таким же бредом можно считать сцену в фильме «Чужой-4», когда на глазах у героинь Сигурни Уивер и Вайноны Райдер через маленькую дырочку в космос высосало гигантское чудовище, которого родила эволюционировавшая матка чужих. На самом деле эту дырочку можно было бы закрыть ладонью, и ничего бы плохого организму от этого бы не было. По крайней мере, до того, пока корабль бы не окутался пламенем при входе в атмосферу…

Еще одна причина летального исхода – радиация

Не будем вдаваться в подробности того, что такое космическая и солнечная радиация, скажем только, что и то, и другое несет в себе неминуемую смерть. Если человеку посчастливилось (Ха! Вот так счастье!) оказаться без скафандра в космическом вакууме на небольшом удалении от планеты, имеющей, как наша Земля, магнитные полюса, его от космических и иных излучений защитит сама планета.

Если же трагедия произойдет достаточно далеко от планеты, но не так далеко от светила, все будет зависеть от того, какого типа это светило – раз, и от активности этого светила на данный момент – два. Если вас «выпустят погулять» на расстоянии 1 а. е. (1 астрономическая единица равна расстоянию от Земли до Солнца, то есть около 150 млн. км.) от голубого гиганта, вы схватите смертельную дозу мгновенно и реанимировать спасателям будет некого уже через секунду.

Если все произойдет на расстоянии 1 а. е. от такого желтого карлика, как наше Солнце, все будет зависеть от его спокойствия на сей момент. Попадете в момент солнечной вспышки, помрете от дозы радиации, даже если вас поначалу и откачают. Если же в этот момент светило будет вести себя спокойно, отделаетесь легким испугом.

Если же вас выкинут за пределами какой-либо солнечной системы в месте абсолютной пустоты, все будет зависеть от того, не нарветесь ли вы на космические лучи, исходящие из какой-либо когда-либо рванувшей сверхновой или иной космической «аномалии». Такие протонные выбросы, в зависимости от интенсивности и удаления от объекта их испустившего, могут не только облучить вас рентгеновскими и прочими излучениями, но и попросту распылить ваше тело на молекулы и атомы.

Но попасть в такой интенсивный пучок будет смертельным даже для корабля. А потому можете быть покойны. Шутники, решившиеся произвести на вас сей своеобразный опыт будут держаться от таких мест подальше.

Электромагнитные волны

1. Электромагнитными волнами называются возмущения электромагнитного поля (т.е. переменное электромагнитное поле), распространяющиеся в пространстве.

Утверждение о существовании электромагнитных волн является непосредственным следствием решения системы уравнений Максвелла. Согласно этой теории следует, что переменное электромагнитное поле распространяется в пространстве в виде волн, фазовая скорость которых равна:

где — скорость света в вакууме, , — электрическая и магнитная постоянные, , — соответственно диэлектрическая и магнитная проницаемость среды.

2. Электромагнитные волны — поперечные волны. Векторы Е и Н поля электромагнитной волны взаимно перпендикулярны друг другу. Вектор скорости волны и векторы Е и Н образуют правую тройку векторов (Рисунок 2.1.4).

Для сравнения ориентации тройки векторов , Е и Н на рисунке приведено расположение осей декартовой системы координат. Такое сопоставление уместно и в дальнейшем будет использовано для определения проекций векторов Е и Н на координатные оси.

Рисунок 2.1.4

Взаимно перпендикулярные векторы Е и Н колеблются в одной фазе (их колебания синфазные). Модули этих векторов связаны соотношением:

которое справедливо для любой бегущей электромагнитной волны независимо от формы ее волновых поверхностей.

3. По форме волновых поверхностей волны могут быть плоские, эллиптические, сферические и т.д..

Монохроматической волной называется электромагнитная волна одной определенной частоты. Монохроматическая волна не ограничена в пространстве и во времени. В каждой точке электромагнитного поля монохроматической волны проекции векторов Е и Н на оси координат совершают гармонические колебания одинаковой частоты . Например, для плоской монохроматической волны, распространяющейся вдоль положительного направления оси ОУ, как показано на рисунке 2.1.3.,ее уравнение имеет вид:

Такие волны называются плоско (или линейно) поляризованными волнами.

Плоскость, в которой происходит колебание вектора Е называют плоскостью поляризации линейно поляризованной волны, а плоскость колебаний вектора Н – плоскостью колебаний. Ранее эти названия были обратными (см. ).

4. Все сказанное о стоячих волнах в упругих средах относится и к электромагнитным волнам. В этом случае, однако, волна характеризуется не одним вектором, а двумя взаимно перпендикулярными векторами Е и Н.

Стоячая электромагнитная волна состоит из двух стоячих волн — магнитной и электрической, колебания которых сдвинуты по фазе на .

5. Энергия электромагнитных волн. Объемная плотность энергии электромагнитного поля в линейной изотропной среде задается соотношением: с — скорость света в вакууме.

В случае плоской линейно поляризованной монохроматической волны, распространяющейся вдоль положительного направления ОY, напряженность электрического поля задается уравнением:

соответственно объемная плотность энергии этой волны

Значение объемной плотности энергии волны меняется за период от 0 до .Среднее за период значение энергии равно:

.

6. Вектор плотности потока энергии электромагнитной волны называется вектором Умова — Пойнтинга:

Для линейно поляризованной монохроматической волны вектор Пойнтинга направлен в сторону распространения волны и численно равен:

Интенсивность электромагнитной волны равна модулю среднего значения вектора Пойнтинга за период его полного колебания:

Интенсивностью электромагнитной волны называется физическая величина, численно равная энергии, переносимая волной за единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны.

Интенсивность бегущей монохроматической волны: — фазовая скорость волны, среднее значение объемной плотности энергии поля волны.

Интенсивность света (электромагнитных волн, рассматриваемых в оптике) прямо пропорциональна квадрату амплитуды колебаний вектора напряженности Е поля световой волны.

Главная причина быстрой смерти – гипоксия

А вот смерть от недостатка кислорода – это серьезная вещь. Понятно, что в скафандре, даже в самом никудышном, есть своя система жизнеобеспечения, которая призвана удерживать на приемлемом уровне внешнее давление вокруг тела, поддерживать температуру и, конечно же, обеспечивать дыхательную систему человека дыхательной смесью.

Без скафандра выжить в вакууме можно, если научиться существовать без кислорода долгое время. Но, увы, тело, и, главное – мозг человека, к такому не приспособлены. А потому в числе первых от кислородного голодания у нас отключатся участки мозга, отвечающие за мышление, посредством которых мы принимаем решения и производим осознанные операции, направленные на спасение себя.

Далее начнут отключаться и «вегетативные» участки, отвечающие за работу сердца и органов. После этого без кислорода начнут умирать клетки организма. И если это будут клетки мозга, то восстановить его работу, даже запустив сердце, уже не получится. То есть, на все про все у «спасателей» есть около 2 минут. Больше – это уже смерть.

Природа грома

Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.

Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.

Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:

  • Гром — это сотрясение воздуха, образующее звук
  • Он происходят благодаря тому, что молния проходит от облака к облаку или от облака к земле.
  • Если нет эха, то мы слышим просто единичный удар грома, соответствующий одной мгновенной причине, производящей его
  • Когда же мы слышим раскаты грома, мы просто слышим эхо одного и того же удара, отражающегося много раз от облаков к земле

Опасность уплыть в открытый космос

Усталость в открытом космосе может привести к тому, что астронавт улетит от МКС и потеряется в пространстве. Таких ужасных случаев еще не происходило, но такая опасность все-таки есть. При выходе из МКС, астронавты крепятся к ней при помощи стального троса длиной 26 метров. Это сводит к минимуму риск уплыть в открытый космос, но есть и дополнительная мера подстраховки. В каждый скафандр встроен реактивный ранец — если человек каким-то образом отлетит от станции, он может подлететь к ней обратно.


Современные скафандры оснащены реактивным ранцем

Но во время первых выходов в открытый космос у астронавтов реактивных ранцев не было. Так, в 1973 году астронавты Пит Конрад (Pete Conrad) и Джозеф Кервин (Joseph Kerwin) находились снаружи космической станции «Скайлэб-2» и пытались починить солнечную батарею. Внезапно она развернулась и оттолкнула астронавтов в сторону от станции. К счастью, стальной трос не дал мужчинам уплыть в космическое пространство и они благополучно вернулись на станцию.


Экипаж космического корабля «Скайлэб-2» слева направо: Джозеф Кервин, Пит Конрад и Пол Вейтц

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: