Космические скорости: насколько быстро нужно лететь, чтобы покинуть землю, планетную систему и галактику?

Состав и поверхность

Изображение поверхности Сатурна

Поскольку Сатурн является газовым гигантом, его поверхность обладает низкой плотностью: всего 0,687 г/куб. см. Состоит она из молекулярного водорода в паровом состоянии, который насыщен гелием.

Интересный факт: поскольку поверхность Сатурна имеет низкую плотность, планета не утонет, если поместить ее в воду.

Под первым слоем находится скопление металлического водорода и гелия в жидком состоянии. Также в веществе имеются примеси летучих веществ, но ученые пока не смогли установить их состав. В центре Сатурна расположено твердое ядро радиусом в 12 500 км, обладающее неровной поверхностью. Оно разогрето до 11 700 градусов Цельсия и по составу может быть приближено к земному.

Из-за высоких температур гелий, находящийся рядом с ядром, нагревается и постепенно поднимается вверх, двигаясь к верхнему слою. Из-за этого поверхность гиганта получает большое количество энергии, которое в два с половиной разе больше той, что достается от Солнца.

Атмосфера и температура

Основным веществом, находящимся в верхнем слое планеты, является водород – его доля составляет 96,3%, на гелий приходится 3,25%, а остальные вещества занимают лишь 0,45% от общего объема. Ученые установили, что среди последних имеются фосфин, этан, ацетилен, аммиак, метан и пропан.

Над поверхностью находится слой облаков, разделенный на верхний и нижний уровни. Первый заполнен аммиачными кристаллами, а ближе к поверхности располагается смесь воды и гидросульфида аммония. На облака воздействуют ультрафиолетовые лучи, которые запускают процесс метанового фотолиза. Его результатом является начало химических реакций углеводорода.

Атмосфера состоит из линий, которые становятся шире ближе к экватору. Также ее можно разделить на два слоя. В верхнем давление меняется от 0,5 до 2 бар, а температура от -173 до -113 градусов Цельсия. В нижнем эти параметры варьируются в диапазонах 10-20 бар и от -3 до 57 градусов Цельсия соответственно. Между слоями находится прослойка, состоящая из ледяных облаков. Там происходит плавное изменение температур и давления.

Атмосфера Сатурна

Иногда в атмосфере Сатурна образуются овальные пятна, которые по цвету белее, чем остальные облака. Из-за этого они легко различимы на поверхности. Ученые пока не смогли объяснить их природу, но наблюдения показывают, что образование пятен имеет закономерность. Например, когда на северном полушарии газового гиганта начинается летнее солнцестояние, в этой области планеты появляется Большое Белое Пятно. Есть версия, что образование белых участков связано с электростатическим возмущением.

По поверхности гиганта гуляют ветра, причем их скорость может достигать 500 м/с. Это второй показатель в Солнечной системе после Нептуна. На севере планеты возникают потоки, имеющие волновую структуру, а на южном – струйную.

Интересный факт: на Сатурне периодически появляются бури, размер которых может превосходить габариты Земли.

История освоения космоса

Первым отправить человека в космос смог Советский Союз, обогнав в этом плане США. В ответ штаты стали работать над развитием собственной лунной программы, которая подразумевает изначально орбитальные облеты спутника и в дальнейшем и высадку людей на Луну.

Сколько денег ушло на эту программу рассчитать невозможно. Эксперты отмечают, что в реализация этой программы в сопоставимых ценах оценивается в 500 млрд $. НАСА специально для этих полетов разработало ракету Сатурн 5, которая могла добраться до Луны за три-четыре дня. На те времена это была самая мощная ракета, которая способна покорять большие расстояние в несколько сотен тысяч километров от Земли до нашего спутника в максимально сжатый срок.

Первый человек, который ступил на поверхность Луны – американец Нил Армстронг. В 1969 году в составе миссии Аполлон 11 сумел посадить лунный модуль недалеко от моря Спокойствия. В дальнейшем было выполнено несколько американских пилотируемых миссий. Около десятка космонавтов побывали на Луне, которые провели многие исследования и смогли привести на Земле больше 20 кг лунного грунта.

Через несколько лет интерес к Луне пропал, и было решено свернуть дорогую программу полетов

Подобное объясняется дороговизной пилотируемых самолетов, поэтому в Советском Союзе и США решили сконцентрировать свое внимание на строительстве орбитальных станций на орбите земли и околоземном исследовании космоса. Летать на орбиту Земли было дешевле и проще, а создание орбитальной станции позволило сделать серьезный толчок в освоении космоса

Однако интерес к далеким полетам пропал практически на 30 лет. Только сегодня, когда человечество задумалось о колонизации и исследовании Марса, к нашему спутнику вновь появился интерес. Луну использовали в качестве перевалочной базы для межпланетных перелетах на дальних расстояниях. Человечество сделало серьезный шаг вперед в сфере ракетостроения, что позволило не просто удешевить такие полеты, но и сделать их безопаснее и быстрее.

История покорения:

  • Советский исследовательский аппарат первый раз достиг Луны – 1959 год.
  • Первая успешная посадка на Луне – 1966 год.
  • Высадка экспедиции Нила Армстронга – 1969 год.
  • Последний на сегодня полет человека на Луну – 1972 год.

Как спутники Сатурна ведут кольца

При детальном осмотре видно, что Пан формирует зазор Энке. Частички создаются впереди и позади него. Кольцевые элементы внутри лунной орбиты вращаются вокруг планеты стремительнее, испытывая чистую внешнюю и обратную силы. Последняя замедляет их и заставляет падать к Сатурну. Это снова вызывает ускорение, и они движутся вперед и внутрь по отношению к Пану.

На отдаленности в 2800 км аппарат Кассини сумел запечатлеть спутник Сатурна Дафнис (диаметр – 8 км). При вращении на территории щели Килера он создает волны. Это мозаика, соединяющая несколько снимков, чтобы показать больше волн на краях зазора. Несмотря на свои крошечные размеры, силы тяжести хватает, чтобы разрушать частички в кольце А. По мере прохождения щели волны формируются в горизонтальной и вертикальной плоскостях. Это ценные кадры, так как позволяют рассмотреть сложные взаимодействия между луной и частичками. Здесь видны три волновых гребня, идущих за Дафнис. В каждом следующем наблюдается эволюция формы из-за столкновения частичек. Приближенное излучение спутника также демонстрирует тонкую нить кольцевого материала, созданную кольцом А. Изображение добыто под углом в 71 градус, а масштабность – 168 м на пиксель. Программа Кассини-Гюйгенс выступает общей разработкой ЕКА, НАСА и Итальянского космического агентства. Команда располагается в ЛРД. Две камеры на борту также созданы ими. Добытые фотографии обрабатывают в Боулдере (Колорадо).

Но совершенно обратное происходит с кольцами, расположенными вне орбиты Пана. Спутник вращается быстрее планеты. Передняя сила разгоняет частички, расширяя их орбиты и заставляя отходить от планеты. По мере движения наружу они замедляются и двигаются наружу относительно Пана.

Этот эффект приводит к тому, что фактически, несмотря на притяжение Пана, частички отдаляются от него и формируют зазор Энке.

Внутренний спутник Прометей выполняет вращение быстрее, чем кольцевые частички, поэтому тянет их внутрь и вперед, что приводит к ускорению и расширению орбитального пути. Из-за этого они замедляются и оказываются снаружи по отношению к самому спутнику. Точно также частички в кольце перемещаются быстрее Пандоры, что сокращает их орбиты и замедляет движения, поэтому двигаются внутрь и вперед относительно луны. Выходит, что одна тянет частички в одну сторону, а другая в противоположную. Частички между ними оказываются в ловушке и создают F-кольцо.

Полет «Вояджера-1»

Траектория полета Вояджеров

Хотя «Вояджер-1» стартовал немного позже «Вояджера-2», однако он быстро опередил его. Дело в том, что он совершил несколько гравитационных маневров и набрал более высокую скорость. Целью его были Юпитер и Сатурн, поэтому и путь его оказался более прямым, в итоге он обогнал сородича и к Юпитеру прибыл даже на 4 месяца раньше – 5 марта 1979 года.

Впервые крупным планом были получены уникальные фотографии Юпитера, в частности Большого красного пятна. Были обнаружены полярные сияния и мощные грозы. Были проведены спектрографические исследования атмосферы Юпитера с близкого расстояния и более точно определен её состав.

«Вояджер-1» сделал снимки спутника Юпитера Амальтеи, где было хорошо заметно, что этот спутник имеет не шарообразную, а эллиптическую форму. Также зонд сделал удивительное открытие – наличие у Юпитера тонкого (30 км), кольца шириной около 8000 км, которое просто невидимо с Земли.

Также «Вояджер-1» посетил галилеевские спутники, в частности, пролетел рядом с Ио на расстоянии 13000 км и сделал детальные фотографии поверхности. Аппаратура зафиксировала наличие большого количества серы, а камеры запечатлели 8 действующих вулканов, которые извергались на высоту до 400 км. Именно «Вояджер-1» первым сделал множество удивительных открытий на спутнике Ио.

Другой спутник Юпитера – Европа, оказался не по пути зонда, поэтому дальше он направился к Ганимеду. И там удалось сделать множество фотографий с расстояния всего 5270 км, благодаря которым мы и знаем теперь о наличии на этом спутнике большого количества воды, и возможном существовании там подледного океана.

А вот от Каллисто аппарат пролетел на расстоянии 126 000 км, однако и здесь удалось получить немало детальных фотографий, и обнаружить множество деталей, которые нельзя увидеть с Земли.

После Юпитера «Вояджер-1» отправился к Сатурну, которого он достиг 12 ноября 1980 года. Научный руководитель проекта Эд Стоун говорил, что каждый день они получали множество потрясающих фотографий и прочих данных, открывающих Сатурн с неведомой стороны, ведь до этого про планету было не так уж и много известно.

Например, именно «Вояджер-1» открыл кольцо F и показал волнистую структуру в кольцах, которую создают спутники Прометей и Пандора. Были открыты так называемые «спицы» в кольцах планеты. На переданных фотографиях были видны бури невиданной силы, которые просто нельзя увидеть с Земли. На полюсах были заметны странные структуры шестигранной формы. Было открыто 6 неизвестных ранее спутников и получены детальные снимки Энцелада.

Диона, спутник Сатурна. Снимок Вояджера-1, сделанный 12 ноября 1980 г с расстояния 240 тысяч км.

«Вояджер-1» пролетел около Титана и передал много информации о составе его атмосферы и детальных фотографий.

Во многом благодаря полету «Вояджеров» мы знаем о планетах то, что знаем. Дальнейшие полеты лишь уточнили данные и передали дополнительную информацию. «Вояджеры» были первыми там.

После Сатурна «Вояджер-1» изменил направление полета, поднялся над эклиптикой и продолжил полет, но на пути его уже не было никаких планет. Еще в 2013 году было официально признано, что он вышел за пределы Солнечной системы и теперь полет его продолжается в межзвездном пространстве. Расстояние до него теперь более 20 млрд. км, или 134 астрономических единиц, а проходит он сейчас более 3.3 а.е. в год (примерно 500 млн. км).

Магнитосфера Сатурна

Магнитосфера  на Сатурне примерно в три раза меньше от соседа гиганта Юпитера. От планеты, она направлена к Солнцу примерно на  1 млн. км.

При подлете к планете автоматическая космическая станция Вояджер-1 зарегистрировала волновой удар с расстояния в 26,2 RS от Сатурна. Такие удары Вояджер-1 пересек несколько раз, крайний раз с расстояния 22,9 RS. По расчетам ученых получается, что Титан и его орбита проходит в пределах магнитосферы Сатурна.

Структура магнитосферы Сатурна
«Вояджер-1» автоматический зонд, исследующий Солнечную систему и её окрестности с 5 сентября 1977 года. В настоящее время находится в рабочем состоянии и выполняет дополнительную миссию по определению местонахождения границ Солнечной системы, включая пояс Койпера

Масса Сатурна

Сатурн — большая планета с низкой плотностью, поэтому его масса не так велика, как кажется. Объем 8,2713⋅1014 км³. И хотя Юпитер больше на 18%, масса Сатурна меньше в 3,34 раза. Дело в том, что плотность планеты Сатурн намного ниже плотности других планет солнечной системы.

Гравитация на Сатурне

Низкая плотность материи также обеспечивает низкую гравитацию. Сатурн — газовый гигант и четкой границы поверхности здесь нет, но если провести эту условную линию, то гравитация на поверхности составит всего 91% от земной. Планета в основном состоит из легких газов: водорода и гелия. А основную силу гравитации дает более плотное ядро планеты.

Полет «Вояджера-2» к Урану и Нептуну

Дальше путь зонда лежал к Урану, куда он и прибыл 24 января 1986 года. Благодаря удачному расположению планет зонд воспользовался гравитацией Юпитера и Сатурна для разгона, и достиг Урана за 9 лет после старта. Не будь такого случая, путь занял бы около 30 лет, то есть зонд лишь недавно побывал бы там, а до Нептуна еще не долетел.

На удачный исход этой операции шансы оценивались всего в 60-70%, особенно после проблем с поворотной платформой. Из-за большого расстояния для связи начали применять 64-метровые антенны, расположенные на разных материках. Скорость передачи данных также снизилась, поэтому бортовой компьютер был перепрограммирован под более эффективные алгоритмы сжатия. Однако к тому времени мощность радиоизотопных генераторов уже сильно упала, и для экономии энергии приборы использовались поочередно.

Посещение Урана

Уран при подлете оказался повернут к «Вояджеру-2» южным полушарием. В программу было включено обзорное фотографирование планеты и пролет мимо спутника Миранды. Однако в итоге были открыты еще 2 кольца Урана, помимо известных, и спутник Пак. Затем было открыто еще около десятка мелких спутников, размером всего в несколько десятков километров. Была детально изучена магнитосфера планеты, что дало много новой информации.

Снимок Урана, сделанный Вояджером-2 после его пролета.

Здесь тоже не обошлось без приключений. За 6 дней до максимального сближения с планетой было обнаружено, что снимки поступают с искажениями в виде черно-белой сетки. Выяснилось, что в одном байте один бит всегда имел значение 1 и не менялся. Программисты переписали программу, чтобы исключить дефектный бит, и успели передать её за 4 дня до сближения.

Всего «Вояджер-2» передал примерно 6000 снимков Урана его колец и спутников. Далее его ожидал очередной маневр и длинный путь к следующему пункту – Нептуну, которого он и достиг 24 августа 1989 года, спустя 12 лет после старта, и всего за 3.5 года от Урана. До сих пор так далеко не долетал ни один аппарат с Земли.

Посещение Нептуна

Из-за большой удаленности ручное управление было бесполезным – радиосигнал шел от Земли до аппарата более 4 часов, и столько же обратно. За это время зонд успел бы пролететь более 200 000 км. Поэтому работал он самостоятельно, всю информацию записывая на специальный цифровой магнитофон, а уже потом, после удаления от планеты всю её передал. Скорость передачи на таком расстоянии тоже была очень медленной, чтобы фильтровать слабый полезный сигнал от помех.

«Вояджер-2» впервые сфотографировал Нептун с близкого расстояния, изучил его атмосферу и магнитосферу. Был обнаружен гигантский антициклон, подобный Большому Красному пятну на Юпитеру, но этот получил название Большое Темное пятно. Были сняты полярные сияния на Нептуне, причем не только у полюсов, но и везде, а также на его спутнике Тритоне.

Нептун, Большое Темное пятно и облака в атмосфере.

Тритон, вопреки ожиданиям – на нем царит экстремальный холод до -236 градусов, оказался геологически активным. На нем были обнаружены не только действующие вулканы, но и гейзеры. Такой тип вулканизма называется жидкостно-ледяным, и он уникален. Тритон имеет очень разреженную атмосферу, однако зонд обнаружил в ней тонкие облака, вероятно, из азотного инея.

Кроме множества других открытий, «Вояджер-2» обнаружил у Нептуна 6 мелких спутников и кольца.

После Нептуна аппарат, как и «Вояджер-1», ушел к югу от эклиптики под д углом 48 градусрв. На этом его планетная миссия закончилась. Скорость полета его к тому времени достигла 15.9 км/с.

Интересные факты о Сатурне

Сатурн в сравнении с другими планетами Солнечной системы

• Около Сатурна пролетели четыре космических корабля: «Пионер-11», «Вояджер-1 и 2» и «Кассини». Последний вышел на орбиту Сатурна 1 июля 2004 года и по сей день продолжает посылать на Землю информацию о газовом гиганте, его спутниках и кольцах. • Магнитное поле Сатурна несколько слабее магнитного поля Земли. Сила магнитного поля Сатурна составляет одну двадцатую от силы Юпитера. • Сатурн известен как газовый гигант, но ученые считают, что он имеет твердое каменистое ядро, окруженное водородом и гелием. • Сатурн и Юпитер вместе составляют 92% общей массы планет Солнечной системы. • Сатурн находится на расстоянии 1 424 600 000 километров от Солнца

Исследование планеты

Общие сведения

Сатурн – шестая по счету от Солнца и пятая по яркости планета Солнечной системы.

Юпитер, Сатурн и следующие за ним Уран и Нептун относят к газовым гигантам, поскольку состоят они в основном из этого вещества.

У Сатурна нет твердой поверхности,  а масса его превышает земную в 95 раз.

Масса Сатурна в Землях

Примечательно, что плотность его составляет всего лишь 0, 687 грамма на кубический сантиметр – это даже меньше, чем плотность воды. Строение Сатурна представляет собой газовые слои, ближе к центру водород приобретает форму металла, в середине планеты – раскаленное вещество. Кольца состоят из углеродистой пыли и осколков льда.

Единственный спутник планеты, наделенный атмосферой – Титан; на нем можно найти озера метана и холмы мерзлого азота. Титан представляет огромный интерес для ученых, поскольку обладает потенциально пригодной для жизни средой. Из 150 спутников имена есть только у 53 (это, в основном, имена греческих божеств).

Полеты на планету

Космические аппараты начали отправлять на Сатурн ближе к концу XX века, всего их было четыре: Пионер-11 полетел в 1979 году и сделал самые первые фотографии Сатурна и его спутников с расстояния в 20 000 км, а также определил температуру Титана (-179 °C).

Через год свое путешествие начал Вояджер-1, а еще через 9 месяцев – Вояджер – 2, сделавший первые высококачественные снимки планеты, ее колец и спутников.

Благодаря этим полетам было открыто еще пять спутников газового гиганта, а также установлено точное количество колец — 7.

В июле 2004 к Сатурну приблизился исследовательский аппарат Кассини-Гюйгенс.

Миссия Кассини

В проекте принимали участие НАСА, Европейское и Итальянское космические агентства.

Космическая станция, оснащенная камерами и спутниковыми антеннами и предназначенная непосредственно для исследования называлась “Кассини”, а прикрепленный к ней зонд, который должен был осуществить высадку на Титан – “Гюйгенсом”.  Львиную долю расходов – более двух с половиной миллиардов долларов — взяло на себя США, оно же занималось разработкой и созданием станции. Зонд взяло на себя ЕКА, а антенны и высотометр разрабатывали итальянцы. Зонд  назвали в честь Христиана Гюйгенса, обнаружившего Титан и наличие у Сатурна кольца, а станцию – в честь Джованни Кассини, который обозначил множественность колец и открыл четыре крупных спутника планеты.

Кассини

Экспедиция на Сатурн в рамках миссии Кассини-Гюйгенса обошлась в 3 миллиарда долларов, но сведения, полученные за те 20 лет, что работала станция, явно того стоили.

Запуск “Кассини” и прикрепленного к нему зонда произошел 15 октября 1997 года, а первым пунктом прибытия обозначили Венеру.

Половину от веса станции на старте составляло топливо. “Кассини” потребовалось два года, чтобы разогнаться: станция использовала естественную гравитацию планет по пути следования. Устройство было запрограммировано таким образом, чтобы до прибытия на точку назначения, вся его система работала лишь на 2% от всей мощности.

Зимой 2000 года, когда “Кассини” пролетал Юпитер, система активизировалась и сделала фотографии, которые были переданы на Землю. Из-за долгого времени в пути в NASA предположили, что датчики сбились (предположительно, из-за космического мусора), однако вскоре все наладилось.

30 июня 2004 года космическая станция достигла пункта назначения и начала свой путь по орбите планеты, став ее первым искусственным спутником, а 14 января 2005 зонд опустился на Титан.

26 апреля 2017 года “Кассини” приступил к своей последней миссии, совершив более 20 пролетов между внутренним кольцом и самой планетой, предоставив первые фотографии с такого близкого расстояния.

15 сентября 2017 года “Кассини” сгорел в атмосфере газового гиганта, оставив неизгладимый след в истории изучения космоса.

Такая участь постигла станцию неслучайно: нельзя было допустить загрязнение спутников Сатурна, которые, основываясь на данных исследования, вполне могут быть обитаемы. На счету станции – 20 лет службы, десятки оборотов вокруг Сатурна и  огромное количество уникальнейших сведений о системе планеты.

Зонд Кассини

Атмосфера и строение

Полярное сияние над северным полюсом Сатурна. Сияния окрашены в голубой цвет, а лежащие внизу облака — в красный. Прямо под сияниями видно обнаруженное ранее шестиугольное облако

Верхние слои атмосферы Сатурна состоят на 96,3 % из водорода (по объёму) и на 3,25 % — из гелия (по сравнению с 10 % в атмосфере Юпитера). Имеются примеси метана, аммиака, фосфина, этана и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских. Облака нижней части атмосферы состоят из гидросульфида аммония (NH4SH) или воды.

По данным «Вояджеров», на Сатурне дуют сильные ветры, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветра дуют в основном в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что циркуляция атмосферы происходит не только в слое верхних облаков, но и на глубине, по крайней мере, до 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветры в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.

В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы (Большое красное пятно на Юпитере, Большое тёмное пятно на Нептуне). Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 2010 году (менее крупные ураганы образуются чаще).

Британские астрономы обнаружили в атмосфере Сатурна новый тип полярного сияния, которое образует кольцо вокруг одного из полюсов планеты

В отличие от Юпитера полярные сияния Сатурна не связаны с неравномерностью вращения плазменного слоя во внешних частях магнитосферы планеты. Предположительно, они возникают из-за магнитного пересоединения под действием солнечного ветра. Форма и вид полярных сияний Сатурна сильно меняются с течением времени. Их расположение и яркость сильно связаны с давлением солнечного ветра: чем оно больше, тем сияния ярче и ближе к полюсу. Среднее значение мощности полярного сияния составляет 50 ГВт в диапазоне 80—170 нм (ультрафиолет) и 150—300 ГВт в диапазоне 3—4 мкм (инфракрасный).

Во время бурь и штормов на Сатурне наблюдаются мощные разряды молнии. Электромагнитная активность Сатурна, вызванная ими колеблется с годами от почти полного отсутствия до очень сильных электрических бурь.

28 декабря 2010 года «Кассини» сфотографировал шторм, напоминающий сигаретный дым. Ещё один, особенно мощный шторм, был зафиксирован 20 мая 2011 года.

Шестиугольное образование на северном полюсе

Гексагональное атмосферное образование на северном полюсе Сатурна

Странная структура облаков показана на инфракрасном изображении, полученном обращающимся вокруг Сатурна космическим аппаратом «Кассини» в октябре 2006 года. Изображения показывают, что шестиугольник оставался стабильным все 20 лет после полёта «Вояджера», причём шестиугольная структура облаков сохраняется во время их вращения. Отдельные облака на Земле могут иметь форму шестиугольника, но, в отличие от них, шестиугольник на Сатурне близок к правильному. Внутри него могут поместиться четыре Земли. Предполагается, что в районе гексагона имеется значительная неравномерность облачности. Области, в которых облачность практически отсутствует, имеют высоту до 75 км.

Полного объяснения этого явления пока нет, однако учёным удалось провести эксперимент, который довольно точно смоделировал эту атмосферную структуру. 30-литровый баллон с водой поставили на вращающуюся установку, причём внутри были размещены маленькие кольца, вращающиеся быстрее ёмкости. Чем больше была скорость кольца, тем больше форма вихря, который образовывался при совокупном вращении элементов установки, отличалась от круговой. В этом эксперименте был получен, в том числе, и 6-угольный вихрь.

Миссия «Вояджер»

Оба аппарата были созданы в лаборатории НАСА и являлись практически однотипными, то есть были похожи друг на друга, как близнецы. Задачей миссии «Вояджер» было изучение планет — гигантов – Юпитера и Сатурна, не более.

Однако как раз сложилась удачная ситуация – так называемый «парад планет», когда планеты оказываются практически на одной линии, с одной стороны от Солнца. Это позволило разработать такую траекторию полета, когда зонды, пролетая мимо планеты, используют её гравитацию для разгона и могут по кратчайшему пути достичь следующей планеты. Поэтому в итоге «Вояджеры» посетили не только Юпитер и Сатурн, но и все остальные внешние планеты, кроме Плутона, после чего отправились дальше, в открытый космос.

Расстояние до Сатурна | Астрономия, астрология, сонник

Солнечная система > Система Сатурн > Сатурн > Расстояние до Сатурна 

Сатурн – шестая планета в Солнечной системе и самая дальняя из планет, видимая невооруженным глазом. Так как Сатурн проходит по эллиптической траектории, а не круговой, он не всегда лежит на одинаковом расстоянии от Солнца.

Как далеко  Сатурн  от Земли?

Расстояние от нашей планеты до Сатурна постоянно меняется, так как планеты путешествуют через пространство. Когда две планеты  наиболее близки, они находятся на расстоянии примерно в 746 млн миль (1,195 миллиарда километров) друг от друга, что в  восемь раз больше расстояния от Земли до Солнца. На своих самых дальних точках, когда планеты располагаются по разные стороны от Солнца, расстояние между ними составляет более миллиарда миль (1,660 млрд. км) друг от друга, или в 11 раз больше расстояния от Земли до Солнца.

Расстояние от Земли до Сатурна

Путешествуя в пространстве со скоростью более 21 000 миль / ч (34 000 км в час), Сатурну требуется  29,5 земных лет, чтобы совершить один полный оборот вокруг Солнца. Земля обгоняет  газовый гигант, вращаясь вокруг Солнца, менее  одного раза в год, в результате чего Сатурн двигается иногда в обратном направлении на ночном небе.

Это обратное движение вызвало ряд проблем с теорией строения Солнечной системы Коперника, чьи совершенные круги не учитывают очевидную петлю Сатурна и других планет. Это не было определено до Иоганна Кеплера, который предположил, что планеты вращаются по эллиптической орбите, а не по круговой.

Как далеко Сатурн от Солнца?

Как и все планеты, массивный газовый гигант Сатурн движется по эллипсу, а не по круговой траектории, и поэтому его расстояние от Солнца изменяется незначительно в течение своего года. Сатурн находится на расстоянии в среднем 886 000 000 мили (1,4 млрд. км) от Солнца, что в девять раз дальше  расстояния от Земли до Солнца.  В крайней точке (афелий), Сатурн находится на расстоянии  934000000 мили (1,5 млрд. км) от Солнца, в  его ближайшей точке (перигелий), расстояние до Сатурна от Солнца «всего лишь» 839 миллионов миль (1,4 млрд. км). Такое расстояние означает, что температура на Сатурне остается холодной круглый год. Если вы хотите больше узнать о планете Сатурн, читайте нашу статью.

Сколько времени потребуется, чтобы достичь Сатурна?

Космические путешествия редко проходят  по прямой линии. Космический аппарат часто использует планеты, спутники, и даже Солнце, чтобы получить необходимую скорость при ограничениях в запасах топлива. Таким образом, старым миссиям, могло потребоваться меньше времени для достижения внешних планет, чем миссиям, с более современными силовыми установками.

Пионер-11 взял первый курс на Сатурн. Стартовав в апреле 1973 года корабль долетел до Сатурна более шести лет спустя, в сентябре 1979 года.

Космические аппараты Вояджер использовали преимущества линейного пути для достижения внешних планет. Отправленный в сентябре 1977 года Вояджер-1 использовал гравитационную «помощь»  Юпитера, чтобы добраться до Сатурна в ноябре 1980 года, всего лишь три года спустя. Хотя Вояджер-2 стартовал на месяц раньше, чем его близнец, он использовал более длинный кольцевой маршрут и прибыл в августе 1981 года.

Миссия Кассини, которая покинула Землю в октябре 1997 года, два раза использовала Венеру в качестве гравитационного «помощника». Кассини также сделала облет вокруг Юпитера, сделав множество красивых фотографий После почти семи лет, корабль вышел на орбиту Сатурна в июле 2004 года, где он намерен изучать планету, по крайней мере, до 2017 года. Среди прочего, миссия изучает молнии в атмосфере Сатурна.

Миссия Новый Горизонт была направлена к карликовой планете Плутон и запущена в январе 2006 года. Используя максимальную на сегодняшний день скорость запуска, он прошел Марс и Юпитер и пронесся возле Сатурна в июне 2008 года, потратив всего полтора года.

Как видите, вопрос: «Сколько времени требуется, чтобы достичь Сатурн?» существенно зависит от выбранного пути для миссии, а так же, если не больше, от скорости самого космического корабля.

Положение и движение Сатурна

Поверхность Сатурна

Планеты земного типа

Меркурий

Самая маленькая планета Солнечной системы имеет радиус всего 2440 км. Период обращения вокруг Солнца, для простоты понимания приравненный к земному году, составляет 88 дней, при этом оборот вокруг собственной оси Меркурий успевает совершить всего полтора раза. Таким образом, его сутки длятся приблизительно 59 земных дней. Долгое время считалось, что эта планета все время повёрнута к Солнцу одной и той же стороной, поскольку периоды его видимости с Земли повторялись с периодичностью, примерно равной четырем Меркурианским суткам.  Это заблуждение было развеяно с появлением возможности применять радиолокационные исследования и вести постоянные наблюдения с помощью космических станций. Орбита Меркурия – одна из самых нестабильных, меняется не только скорость перемещения и его удалённость от Солнца, но и само положение. Любой интересующийся может наблюдать этот эффект.

Меркурий в цвете, снимок космического аппарата MESSENGER

Близость к Солнцу стала причиной того, что Меркурий подвержен самым большим перепадам температуры среди планет нашей системы. Средняя дневная температура составляет около 350 градусов по Цельсию, а ночная -170 °C. В атмосфере выявлены натрий, кислород, гелий, калий, водород и аргон. Существует теория, что он был ранее спутником Венеры, но пока это остается недоказанным. Собственные спутники у него отсутствуют.

Венера

Вторая от Солнца планета, атмосфера которой почти полностью состоит из углекислого газа. Её часто называют Утренней звездой и Вечерней звездой, потому что она первой из звёзд становится видна после заката, так же как и перед рассветом продолжает быть видимой и тогда, когда все остальные звёзды скрылись из поля зрения. Процент диоксида углерода составляет в атмосфере 96%, азота в ней сравнительно немного – почти 4% и в совсем незначительном количестве присутствует водяной пар и кислород.

Венера в УФ спектре

Подобная атмосфера создает эффект парника, температура на поверхности из-за этого даже выше, чем у Меркурия и достигает 475 °C. Считается самой неторопливой, венерианские сутки длятся 243 земных дня, что почти равно году на Венере – 225 земных дней. Многие называют её сестрой Земли из-за массы и радиуса, значения которых очень близки к земным показателям. Радиус Венеры составляет 6052 км (0,85% земного). Спутников, как и у Меркурия, нет.

Земля

Третья планета от Солнца и единственная в нашей системе, где на поверхности есть жидкая вода, без которой не смогла бы развиться жизнь на планете. По крайней мере, жизнь в том виде, в котором мы её знаем. Радиус Земли равен 6371 км и, в отличие от остальных небесных тел нашей системы, более 70% её поверхности покрыто водой. Остальное пространство занимают материки. Ещё одной особенностью Земли являются тектонические плиты, скрытые под мантией планеты. При этом они способны перемещаться, хоть и с очень малой скоростью, что со временем вызывает изменение ландшафта. Скорость перемещения планеты по ней – 29-30 км/сек.

Наша планета из космоса

Один оборот вокруг своей оси занимает почти 24 часа, причем полное прохождение по орбите длится 365 суток, что намного больше в сравнении с ближайшими планетами-соседями. Земные сутки и год также приняты как эталон, но сделано это лишь для удобства восприятия временных отрезков на остальных планетах. У Земли имеется один естественный спутник – Луна.

Марс

Марс, снимок космического телескопа Хаббл в 2003 году

Четвёртая планета от Солнца, известная своей разрежённой атмосферой. Начиная с 1960 года, Марс активно исследуется учеными нескольких стран, включая СССР и США. Не все программы исследования были успешными, но найденная на некоторых участках вода позволяет предположить, что примитивная жизнь на Марсе существует, или существовала в прошлом.

Яркость этой планеты позволяет видеть его с Земли без всяких приборов. Причем раз в 15-17 лет, во время Противостояния, он становится самым ярким объектом на небе, затмевая собой даже Юпитер и Венеру.

Радиус почти вдвое меньше земного и составляет 3390 км, зато год значительно дольше – 687 суток. Спутников у него 2 — Фобос и Деймос.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: