Что такое звезды и почему они светятся. Почему светят звезды
Звезды – гигантские космические объекты в виде шаров из газа, излучающих собственный свет, в отличие от планет, спутников или астероидов, которые светятся только благодаря тому, что отражают свет звезд. Долгое время ученые не могли прийти к единому мнению,звезды излучают свет, и какие реакции в их недрах заставляют выделять столь большое количество энергии.
История изучения звезд
В древние времена люди думали, что звезды – это души людей, живые существа или гвозди, которые удерживают небо. Они придумывали множество объяснений тому, почему ночью звезды светятся, а Солнце долгое время считали совершенно отличным от звезд объектом.Проблема термических реакций, происходящих в звездах вообще и на Солнце – ближайшей к нам звезде – в частности, давно волновала ученых многих направлений науки. Физики, химики, астрономы пытались разобраться, что приводит к выбросу тепловой энергии, сопровождающемуся мощным излучением.Ученые-химики считали, что в звездах происходят экзотермические химические реакции, в результате выделяется большое количество тепла. Физики не соглашались с тем, что в этих космических объектах происходят реакции между веществами, так как никакие реакции не смогли бы дать столько света на протяжении миллиардов лет.Когда Менделеев открыл свою знаменитую таблицу, началась новая эра в изучении химических реакций – были найдены радиоактивные элементы и вскоре именно реакции радиоактивного распада назвали главной причиной излучения звезд.
Современная теория об излучении звезд
В 1903 году уже устоявшееся представление о том, почему звезды светят и излучают тепло, перевернул шведский ученый Сванте Аррениус, который разработал теорию электролитической диссоциации. По его теории, источником энергии в звездах являются атомы водорода, которые соединяются между собой и образуют более тяжелые ядра гелия. Эти процессы вызываются сильным давлением газа, высокой плотностью и температурой (около пятнадцати миллионов градусов Цельсия) и происходят во внутренних областях звезды. Эту гипотезу стали изучать другие ученые, которые пришли к выводу, что такой реакции синтеза достаточно, чтобы выделить колоссальное количество энергии, которое производят звезды. Также вполне вероятно, чтобы синтез водорода позволял светить звездам на протяжении нескольких миллиардов лет.
Выделяющаяся в недрах звезд энергия передается во внешние области газа, к поверхности звезды, откуда она начинает излучаться в виде света. Ученые считают, что лучи света добираются из ядер звезд к поверхности долгие десятки или даже сотни тысяч лет. После этого звездное излучение добирается до Земли, что тоже требует большого количества времени. Так, излучение Солнца достигает нашей планеты за восемь минут, свет второй по близости звезды Проксимы Центравры доходит до нас за четыре с лишним года, а свет многих звезд, которые можно увидеть невооруженным глазом на небосводе , проделал путь в несколько тысяч или даже миллионов лет.
Межпланетный интернет
Проект меж планетарного интернета (Interplanetary Internet) предназначен для оснащения станций сверх дальним космическим интернетом. Его разработка ведется на основе нового протокола DTN (Delay/Disruption Tolerant Networking).
В космосе перебои с передачей сигналов – довольно частое явление, и протокол может обеспечить наибольшую проходимость объемов информации даже при сбоях и задержках. Переданный сигнал с данными, полученный на узле, при отсутствии возможности дальнейшей передачи записывается. Затем происходит поиск канала связи, и при появлении возможности связи со следующим узлом данные передаются.
Благодаря этому проекту в будущем на красной планете возможно появление и развитие интернета на Марсе, а научные марсианские станции получат возможность установки вай фай соединений.
Передача информационных данных с помощью сигналов происходит между планетами Марс и Земля с разной скоростью, с разной степенью устойчивости. Количество спутников и орбитальных станций со временем становится больше, и это выдвигает новые требования к уровню оснащенности освоения космического пространства.
Сколько времени идет радиосигнал от Земли к Марсу в момент максимального сближения планет? в момент максимального отдаления? Какие объекты могут перекрыть сигнал и когда может наступить фаза радиомолчания, сколько она будет длиться?
Минимальное расстояние от Земли до Марса — 55,76 миллиона километров (во время Великого противостояния), максимальное — 401 миллион километров (в оппозиции, когда Земля и Марс нахолятся с противоположных сторон от Солнца). Соответствующее время движения электромагнитного сигнала — от 3 минут 6 секунд до 22 минут 17 секунд. Помешать связи может, в первую очередь, Солнце. В редких случаях Солнце может просто оказаться на пути радиоволн (максимум на двое-трое суток). На практике связь затруднена (но не невозможна) в тех случаях, когда траектория сигнала просто проходит рядом с Солнцем, то есть примерно в течение нескольких недель вблизи оппозиции. Также, на короткое время радиосвязи может помешать Луна, если она окажется на пути сигнала. Длительность вызванного Луной перерыва связи не может превышать одного часа, а скорее всего составит примерно полчаса.
Похоже, что канала @MarsOneM пока что нет в базе Telegram Analytics.
Не расстраивайтесь, ведь добавить его очень просто. Статистика по каналу появится в течение 10 минут после его добавления.
Если у вас возникли проблемы, вы можете обратиться в наш чат поддержки.
Венера
Эта планета вторая от Солнца. По своим размерам она близка к диаметру Земли, диаметр составляет 12 104 км. По всем остальным показателям Венера существенно отличается от нашей планеты. Сутки здесь длятся 243 земных дня, а год — 255 дней. Атмосфера Венеры на 95% состоит из углекислого газа, который создает на ее поверхности парниковый эффект. Это приводит к тому, что средняя температура на планете составляет 475 градусов Цельсия. Атмосфера также включает в себя 5% азота и 0,1% кислорода.
- Венера является второй планетой от Солнца в Солнечной системе.
- Венера является самой горячей планетой в Солнечной системе, хоть и является второй планетой от Солнца. Температура поверхности может достигать 475 °С.
- Первый космический аппарат, отправленный на исследование Венеры, был отправлен с Земли 12 февраля 1961 года и носил название «Венера-1».
- Венера является одной из двух планет, направление вращение которой вокруг своей оси отличается от большинства планет в Солнечной системе.
- Орбита вращения планеты вокруг Солнца очень близка к круговой.
- Дневная и ночная температура поверхности Венеры практически не отличается из-за большой тепловой инерции атмосферы.
- Один оборот вокруг Солнца Венера делает за 225 земных суток, а один оборот вокруг своей оси за 243 земных суток, то есть один день на Венере длится больше чем один год.
- Первые наблюдения за Венерой в телескоп осуществил Галилео Галилей в начале 17 века.
- У Венеры нет естественных спутников.
- Венера является третьим по яркости объектом на небосводе, после Солнца и Луны.
Чем интересны противостояния планет?
Противостояние — это лучшее время, чтобы наблюдать внешние планеты и другие космические тела. В это время их полностью освещает Солнце, и объекты ярко сияют на небе. Кроме того, противостояние происходит во время максимального сближения с Землей, когда планета на небе достигает наибольшего размера. Особенно это характерно для Марса, так как он находится ближе всего к Земле и во время противостояния его размер на небе значительно увеличивается.
Что самое важное, противостояние дает нам больше времени для наблюдений! Космическое тело в противостоянии видно всю ночь и располагается высоко на небе в полночь. Неудивительно, что астероиды и другие тусклые космические тела Солнечной системы часто обнаруживают именно
Космические аппараты «Пионер» и «Вояджер»
Одной из самых амбициозных программ НАСА стало исследование отдаленных районов Солнечной системы, находящихся за поясом астероидов. Именно там проходят орбиты планет-гигантов, о которых к началу 70-х гг. XX в. было известно крайне мало.
Для исследования этих планет было построено две станции, «Пионер-10» и «Пионер-11», которые отправились в космос в 1972 и 1973 гг. «Пионер-10» стал первым аппаратом, который пересек пояс астероидов, пролетел мимо Юпитера и передал на Землю фотографии этой самой большой в нашей системе планеты. В 1973 г. станция приблизилась к Юпитеру на расстояние 132 тыс. км. Она подтвердила, что планета состоит из легких элементов — водорода, гелия — и не имеет твердой поверхности.
Большое красное пятно на Юпитере. Фотография «Вояджер-1», 1979 г.
К удивлению ученых, измерения показали, что планета отдает тепла в 2,5 раз больше, чем получает от Солнца. В следующем году мимо Юпитера пролетела станция «Пионер-11», которая передала на Землю более четкие снимки его облачного покрова. Но главной целью был Сатурн. Как и Юпитер, это гигантское небесное тело является газовой планетой, не имеющей твердой поверхности.
В 1979 г. «Пионер-11» пролетел на расстоянии 20 тыс. км от планеты, передал на Землю фотографии планеты и продолжил свой путь в дальний космос. Обе станции оставались на связи с Землей до конца XX в. Последний сигнал от «Пионера-10» был получен в 2003 г. Вскоре ученые обнаружили, что после выхода за орбиту Плутона скорость обеих АМС замедляется, а их траектории отклоняются в сторону Солнца. Этот феномен, который был назван «эффектом Пионера», объясняют воздействием собственного теплового излучения аппаратов, которое стало оказывать на них заметное влияние только при большом удалении от Солнца.
«Парад планет» в конце 70-х гг. XX в. создал уникальную возможность облететь все внешние планеты Солнечной системы, за исключением Плутона. С этой целью НАСА построило две одинаковых станции — «Вояджер-1» и «Вояджер-2», стартовавшие в 1977 г. Аппараты передали на Землю уникальные кадры движения облаков в верхнем слое атмосферы Юпитера. Оказалось, что он, как и Сатурн, имеет кольца, а на одном из его спутников — Ио, были обнаружены действующие вулканы. С интервалом в год станции пролетели мимо Сатурна. Они выяснили, что кольца планеты состоят не из нескольких крупных образований, а из тысяч узких колечек. «Вояджер-1» прошел вблизи Титана, единственного спутника в нашей системе с плотной атмосферой. Ученые установили, что атмосфера спутника состоит из азота.
Космический аппарат «Вояджер»
Затем «Вояджер-1» отправился за пределы Солнечной системы, а «Вояджер-2» взял курс на Уран и достиг этой гигантской газовой планеты в 1986 г. Станция сделала первые и единственные на сегодня снимки Урана с близкого расстояния и открыла 10 новых спутников планеты. Через 3 года «Вояджер-2» пролетел мимо Нептуна — четвертой по величине газовой планеты Солнечной системы, передав на Землю бесценные фотографии.
Что такое «Вояджер»?
«Вояджер» — это американский проект по исследованию дальних миров. Чтобы получить информацию о планетах и звёздах в непосредственной близости от Солнечной системы, NASA ещё в 1977 году запустило в космос два спутника. Спустя 30 лет полёта космический аппарат «Вояджер-2», запущенный 20 августа 1977 года, пересёк границу Солнечной системы. Примерно в 2025 году аппараты начнут пересекать межзвёздное пространство — первый «буфер», отделяющий нашу планетную систему от внешнего космоса.
Благодаря «Вояджеру-1» и «Вояджеру-2» у нас есть высокоточные снимки Сатурна, Нептуна, Юпитера и Урана, недосягаемых для детального наблюдения с Земли. Но это только верхушка айсберга. В 1998 году «Вояджер-1» стал самым удалённым от Земли рукотворным объектом, в 2007 году приблизился к ближней границе Солнечной системы, а в 2012 году вышел в межзвёздное пространство и стал первым в истории космическим аппаратом, формально покинувшим пределы Солнечной системы. После того как «Вояджеры» начали приближаться к краю Солнечной системы, аппараты стали передавать на Землю странные данные — короткие сигналы с одинаковым интервалом и амплитудой, а также данные со спектрометров, которые говорили о том, что рядом с космическими объектами, созданными человеком, могут находиться потенциально пригодные для жизни миры.
50 интересных фактов о солнечной системе
- Юпитер считается самой большой планетой Солнечной системы.
- В Солнечной системе имеется 5 планет-карликов, одну из которых переквалифицировали в Плутон.
- Очень мало в Солнечной системе астероидов.
- Венера является самой горячей планетой Солнечной системы.
- Около 99% места(по объему) занимает Солнце в Солнечной системе.
- Одним из самый красивых и оригинальных мест Солнечной системы считается спутник Сатурна. Там можно заметить огромную концентрацию этана и жидкого метана.
- У нашей Солнечной системы есть хвост, напоминающий четырехлистный клевер.
- Солнце следует непрерывному 11-летнему циклу.
- В Солнечной системе насчитывается 8 планет.
- Полностью сформирована Солнечная система благодаря большому газопылевому облаку.
- Ко всем планетам Солнечной системы долетали космические аппараты.
- Венера является единственной планетой Солнечной системы, которая вращается против часовой стрелки вокруг своей оси.
- У Урана насчитывается 27 спутников.
- Самая большая гора — на Марсе.
- Огромная масса объектов Солнечной системы пришлась на Солнце.
- Солнечная система находится в составе галактики Млечный путь.
- Солнце – центральный объект солнечной системы.
- Часто Солнечную систему разделяют на регионы.
- Солнце является ключевым компонентом Солнечной системы.
- Примерно 4,5 миллиарда лет была образована Солнечная система.
- Самой далекой планетой Солнечной системы является Плутон.
- Две области в Солнечной системе заполнены малыми телами.
- Солнечная система построена вопреки всем законам Вселенной.
- Если сравнивать Солнечную систему и космос, то она в нем просто песчинка.
- За последние несколько столетий Солнечная система утратила 2 планеты: Вулкан и Плутон.
- Исследователи уверяют, что Солнечную систему создавали искусственным путем.
- Единственным спутником Солнечной системы, у которого плотная атмосфера и поверхность которого не удастся увидеть из-за облачного покрова – Титан.
- Область Солнечной системы, которая находится за орбитой Нептуна называется поясом Койпера.
- Облаком Оорта называется область Солнечной системы, которая служит источником кометы и длинного периода обращения.
- Каждый объект Солнечной системы держится там из-за силы притяжения.
- Ведущая теория Солнечной системы предполагает появление планет и спутников из огромного облака.
- Солнечная система считается самой тайной частицей Вселенной.
- В Солнечной системе есть огромный пояс астероидов.
- На Марсе можно видеть извержение самого большого вулкана Солнечной системы, который назван Олимп.
- Окраиной Солнечной системы считается Плутон.
- На Юпитере есть большой океан жидкой воды.
- Луна – крупнейший спутник Солнечной системы.
- Самым большим астероидом Солнечной систмы считается Паллада.
- Самая яркая планета Солнечной системы – Венера.
- В основном Солнечная система состоит из водорода.
- Земля является равноправным членом Солнечной системы.
- Солнце нагревается медленно.
- Как ни странно самые огромные запасы воды в Солнечной системе есть в солнце.
- Плоскость экватора каждой планеты Солнечной системы расходится с плоскостью орбиты.
- Спутник Марса с названием Фобос является аномалией Солнечной системы.
- Солненчая система может поражать собственным многообразием и масштабом.
- Планеты Солнечной системы подвергаются влиянию Солнца.
- Пристанищем спутников и газовых гигантов считается внешняя оболочка Солнечной системы.
- Огромное количество планетарных спутников Солнечной системы мертвы.
- Крупнейшим астероидом, диаметр которого 950 км, называется Церера.
Источники
- http://www.7gy.ru/shkola/okruzhajuschii-mir/930-pro-planety-solnechnoj-sistemy-dlya-detej.htmlhttp://100-faktov.ru/50-interesnyx-faktov-pro-solnechnuyu-sistemu/
Полет «Вояджера-2» к Урану и Нептуну
Дальше путь зонда лежал к Урану, куда он и прибыл 24 января 1986 года. Благодаря удачному расположению планет зонд воспользовался гравитацией Юпитера и Сатурна для разгона, и достиг Урана за 9 лет после старта. Не будь такого случая, путь занял бы около 30 лет, то есть зонд лишь недавно побывал бы там, а до Нептуна еще не долетел.
На удачный исход этой операции шансы оценивались всего в 60-70%, особенно после проблем с поворотной платформой. Из-за большого расстояния для связи начали применять 64-метровые антенны, расположенные на разных материках. Скорость передачи данных также снизилась, поэтому бортовой компьютер был перепрограммирован под более эффективные алгоритмы сжатия. Однако к тому времени мощность радиоизотопных генераторов уже сильно упала, и для экономии энергии приборы использовались поочередно.
Посещение Урана
Уран при подлете оказался повернут к «Вояджеру-2» южным полушарием. В программу было включено обзорное фотографирование планеты и пролет мимо спутника Миранды. Однако в итоге были открыты еще 2 кольца Урана, помимо известных, и спутник Пак. Затем было открыто еще около десятка мелких спутников, размером всего в несколько десятков километров. Была детально изучена магнитосфера планеты, что дало много новой информации.
Снимок Урана, сделанный Вояджером-2 после его пролета.
Здесь тоже не обошлось без приключений. За 6 дней до максимального сближения с планетой было обнаружено, что снимки поступают с искажениями в виде черно-белой сетки. Выяснилось, что в одном байте один бит всегда имел значение 1 и не менялся. Программисты переписали программу, чтобы исключить дефектный бит, и успели передать её за 4 дня до сближения.
Всего «Вояджер-2» передал примерно 6000 снимков Урана его колец и спутников. Далее его ожидал очередной маневр и длинный путь к следующему пункту – Нептуну, которого он и достиг 24 августа 1989 года, спустя 12 лет после старта, и всего за 3.5 года от Урана. До сих пор так далеко не долетал ни один аппарат с Земли.
Посещение Нептуна
Из-за большой удаленности ручное управление было бесполезным – радиосигнал шел от Земли до аппарата более 4 часов, и столько же обратно. За это время зонд успел бы пролететь более 200 000 км. Поэтому работал он самостоятельно, всю информацию записывая на специальный цифровой магнитофон, а уже потом, после удаления от планеты всю её передал. Скорость передачи на таком расстоянии тоже была очень медленной, чтобы фильтровать слабый полезный сигнал от помех.
«Вояджер-2» впервые сфотографировал Нептун с близкого расстояния, изучил его атмосферу и магнитосферу. Был обнаружен гигантский антициклон, подобный Большому Красному пятну на Юпитеру, но этот получил название Большое Темное пятно. Были сняты полярные сияния на Нептуне, причем не только у полюсов, но и везде, а также на его спутнике Тритоне.
Нептун, Большое Темное пятно и облака в атмосфере.
Тритон, вопреки ожиданиям – на нем царит экстремальный холод до -236 градусов, оказался геологически активным. На нем были обнаружены не только действующие вулканы, но и гейзеры. Такой тип вулканизма называется жидкостно-ледяным, и он уникален. Тритон имеет очень разреженную атмосферу, однако зонд обнаружил в ней тонкие облака, вероятно, из азотного инея.
Кроме множества других открытий, «Вояджер-2» обнаружил у Нептуна 6 мелких спутников и кольца.
После Нептуна аппарат, как и «Вояджер-1», ушел к югу от эклиптики под д углом 48 градусрв. На этом его планетная миссия закончилась. Скорость полета его к тому времени достигла 15.9 км/с.
Юпитер
Юпитер — самая большая планета в Солнечной системе. Юпитер имеет размер в 11 раз больше, чем размер Земли, поэтому его часто называют гигантом. Это третий по яркости после Луны и Венеры небесный объект (исключая светило, конечно). Юпитер вращается быстрее по сравнению с вращением других объектов. Из-за скорости вращения Юпитер имеет более широкий размер со стороны экватора.
Большая часть атмосферы Юпитера состоит из водорода, а остальное – газ гелий. Слои атмосферы на этой планете очень толстые, поэтому Юпитер выглядит как гигантский шар газа. Планета Юпитер имеет 16 спутников, среди которых есть спутники Ганимед, Каллисто, Европа и Ио (4 крупнейших спутника
Юпитера).
Планета | Расстояние до Солнца(млн. км) | Диаметр(км) | Температура поверхности(ºC) | |
от | до | |||
Юпитер | 778 | 142.700 | -130 | 50000 |
Юпитер
Эта планета является самой большой в Солнечной системе и имеет диаметр 139 822 км, что в 19 раз больше земного. Сутки на Юпитере длятся 10 часов, а год равен приблизительно 12 земным годам. Юпитер в основном состоит из ксенона, аргона и криптона. Если бы он был в 60 раз больше, то мог бы стать звездой благодаря спонтанной термоядерной реакции.
Средняя температура на планете составляет -150 градусов Цельсия. Атмосфера состоит из водорода и гелия. Кислорода и воды на его поверхности нет. Есть предположение, что в атмосфере Юпитера есть лед.
- Юпитер расположен на пятой орбите от Солнца;
- На земном небосклоне, Юпитер является четвертым по яркости объектом, после Солнца, Луны и Венеры;
- На Юпитере самый короткий день из всех планет Солнечной системы;
- В атмосфере Юпитера, бушует один из самых длительных и мощных штормов в Солнечной системе, более известный как Большое Красное Пятно;
- Луна Юпитера — Ганимед, является самой большой луной в Солнечной системе;
- Вокруг Юпитера расположена тонкая система колец;
- Юпитер посетило 8 научно — исследовательских аппаратов;
- Юпитер имеет сильное магнитное поле;
- Если бы Юпитер был в 80 раз массивнее, он стал бы звездой;
- Вокруг Юпитера вращается 67 естественных спутника. Это самый большой показатель в Солнечной системе;
Гелиосфера и солнечный ветер
Гелиосфера, как выяснили ученые, неожиданно велика, что говорит о том, что межзвездная среда в этой части галактики менее плотна, чем считалось раньше. Солнце прорезает путь через межзвездное пространство, словно корабль, движущийся по воде, создавая «носовую волну» и протягивая за ней след, возможно, с хвостом (или хвостами) в форме, подобной форме комет. Оба Вояджера прошли через «нос» гелиосферы, и поэтому не предоставили никакой информации о хвосте.
Так, в представлении художника, выглядит солнечная буря, обрушившаяся на Марс.
И хотя всплески солнечного ветра могут предоставить ученым интересные данные о том, что происходит в межзвездном пространстве, они, по-видимому, оказывают удивительно небольшое влияние на общий размер и форму гелиосферы.
Солнечный ветер может нарастать или ослабевать с течением времени, не оказывая существенного влияния на пузырь. Но если этот пузырь переместится в область галактики с более плотным или менее плотным межзвездным ветром, то он начнет сжиматься или расти. Ну что же, надеемся, что «Вояджеры» еще долго будут отправлять на Землю данные о том, что их окружает, а мы с вами наконец подробнее узнаем о том, что именно происходит в этом таинственном межзвездном пространстве.
Где граница Солнечной системы?
- Подробности
- Просмотров: 312
Что там, за Нептуном? И существует ли граница Солнечной системы? Иногда «краем» Солнечной системы считают расстояние от Солнца до орбиты самой далекой планеты Солнечной системы – Нептуна. Тогда можно сказать, что радиус Солнечной системы составляет 4 545 млн км.А что там дальше? За планетой Нептун находится Плутон, карликовые планеты, астероиды пояса Койпера и т.д.
На самом же деле граница солнечной системы находиться значительно дальше Нептуна!
Для справки: за 1а.е. (астрономическую единицу) принимают расстояние от Солнца до Земли (149597870,691 км).
Большинство современных ученых увязывают понятие границы Солнечной системы со взаимодействием солнечного ветра и межзвездного газа.
Солнечный ветер-межпланетный газ представляет собой поток ионизованной водородной плазмы (газа из протонов и электронов), который со сверхзвуковой скоростью движется от Солнца.
В своем движении солнечный ветер наталкивается и взаимодействует с сверхзвуковым потоком межзвездного газа. При этом возникают сильно различающиеся по своим свойствам области.
Близлежащая к Солнцу область заполнена преобладающим сверхзвуковым солнечным ветром.
На определенном расстоянии от Солнца сверхзвуковая скорость солнечного ветра резко уменьшается из-за взаимодействия с заторможенными уже потоками межзвездного газа. Эта область, как бы плоская сферическая поверхность, называется ударной волной. Область ударной волны находится далеко за орбитой Плутон на расстоянии около 90 а.е. от Солнца.
Далее идет область гелиосферы, в которой солнечный ветер, заторможенный потоком межзвездного газа, движется уже с дозвуковой скоростью. Область гелиосферы заканчивается, когда ионы солнечного ветра тормозятся еще больше и практически останавливаются. В пределах гелиосферы гравитационные силы Солнца еще выше, чем у остальных звезд.
На границе гелиосферы и межзвездного пространства возникает еще одна, так называемая головная ударная волна, когда несущийся со сверхзвуковой скоростью межзвездный газ натыкается на «медленную» полосу солнечного ветра. Расстояние от Солнца до головной ударной волны считается приблизительно равным 230 а.е.
Область гелиосферы, в которой заторможенный до дозвуковой скорости солнечный ветер встречается с потоком аналогичного по скорости межзвездного газа называется гелиопаузой, она находится на расстоянии около 120 а.е. от Солнца. Здесь гравитационная сила Солнца исчезает.
Гелиопауза теоретически является границей раздела двух газов, солнечного ветра и межзвездного газа. Солнечный ветер не может выйти за эту границу в межзвездное пространство. Именно этот рубеж и считается условной границей Солнечной системы.
За пределами гелиопаузы начинается межзвездное пространство.
Нейтральные частицы межзвездного газа, в отличие от заряженных частиц, могут проникать в Солнечную систему, где и обнаруживаются при помощи космических аппаратов. Именно по этим нейтральным частицам возможно косвенное определение местоположения гелиопаузы, т.е. границы Солнечной системы.
Несколько лет назад мощные телескопы вроде «Хаббла» позволили обнаружить ударные волны вокруг звезд — красного гиганта Миры и молодой звезды LL Ориона.
В настоящее время существует пять космических аппаратов, движущихся к границам Солнечной системы.
В 1972 году был запущен космический аппарат «Пионер-10» в сторону Юпитера. Программа исследования Юпитера была выполнена, дальнейший маршрут аппарата — границы Солнечной системы.
Следующий «Пионер-11» стартовал в 1973 году, достиг Юпитера и Сатурна. По завершении исследований была поставлена цель достичь границы Солнечной системы.
В настоящее время оба аппарата находятся в пути. Из-за большого расстояния их координаты практически не изменятся для нас на ближайшие тысячи лет.
Для исследования дальних планет Солнечной системы Юпитера, Сатурна, Урана и Нептуна в 1977 году были запущен космический аппарат «Вояджер-2».
Несколькими месяцами позже к Юпитеру и Сатурну запустили и «Вояджер-1». После выполнения программ космическим аппаратам была поставлена задача выйти за пределы Солнечной системы. Аппараты пересекли границу ударной волны ( «Вояджер-1» — в 2004г. И и «Вояджер-2» – в 2007 г.). В 2013 году «Вояджер-1» пересек границу Солнечной системы! Оба аппарата успешно передают информацию на Землю.
В 2006 году для исследования Плутона был запущен космический аппарат «Новые горизонты».
Следующая страница «Солнечную систему могут расширить»
Назад в раздел «Космос»
Назад в раздел «Достижения науки и техники»