Ученые оценили, сколько планет в нашей Галактике и сколько из них потенциально пригодны для жизни
В ясную ночь, когда световые помехи не являются серьезным фактором, небо выглядит захватывающе: просмотру открывается огромное количество звезд. Но, конечно, мы можем видеть всего лишь малую часть от звезд, которые на самом деле существуют в нашей Галактике. Что еще более поразительно, большинство из них имеют собственную систему планет. Возникает вопрос, сколько же всего экзопланет? Только в одной нашей Галактике должны существовать миллиарды внеземных миров!
Итак, давайте предположим, что восемь планет, которые существуют в пределах Солнечной системы, представляют собой среднее значение. Следующим шагом будет умножить это число на количество звезд, которые существуют в пределах Млечного Пути. Фактическое количество звезд в нашей Галактике является предметом некоторого спора. По существу, астрономы вынуждены проводить приблизительные оценки, поскольку мы не можем рассмотреть Млечный Путь извне. А с учетом того, что он находится в форме спирали с перемычкой, галактический диск наиболее трудно изучать из-за интерференции света от его многочисленных звезд. В результате оценка основывается на расчетах массы нашей Галактики, а также массовой доли звезд в ней. Исходя из этих данных, ученые подсчитали, что Млечный Путь содержит от 100 до 400 миллиардов звезд.
Таким образом, галактика Млечный Путь может иметь от 800 миллиардов до 3,2 триллиона планет. Однако для того, чтобы определить, сколько из них пригодны для жизни, мы должны учитывать количество экзопланет, изученных на данный момент.
По состоянию на 13 октября 2016 года астрономы подтвердили наличие 3397 экзопланет из 4696 потенциальных кандидатов, которые были обнаружены в период с 2009 по 2015 год. Некоторые из этих планет наблюдались непосредственно в процессе прямой визуализации. Тем не менее, подавляющее большинство было обнаружено косвенным образом с помощью методов транзита и радиальных скоростей.
В ходе первоначальной 4-летней миссии космический телескоп «Kepler» наблюдал около 150 000 звезд, которые главным образом относились к М-классу, также известному как красные карлики. Когда в ноябре 2013 года «Kepler» вошел в новую фазу миссии K2, он сместил акцент на изучение звезд K- и G-класса, которые почти такие же яркие и горячие, как Солнце.
По данным недавнего исследования, проведенного научно-исследовательским центром Эймса (NASA), «Kepler» обнаружил, что около 24% звезд M-класса могут иметь потенциально пригодные для жизни планеты сравнимые по размеру с Землей (те, которые не более чем в 1,6 раза превышают Землю по радиусу). На основании числа звезд М-класса в нашей Галактике могут существовать около 10 миллиардов потенциально пригодных для жизни, похожих на Землю миров.
Кроме этого, анализ результатов K2 предполагает, что около одной четверти больших звезд могут также иметь аналогичные Земле планеты, вращающиеся в пределах обитаемых зон. Таким образом, можно оценить, что только в Млечном Пути существуют буквально десятки миллиардов потенциально пригодных для развития жизни планет.
В ближайшие годы миссии космических телескопов «James Webb» и «TESS» будут способны обнаруживать меньшие планеты, вращающиеся вокруг тусклых звезд, и, возможно, даже определят, есть ли жизнь на какой-либо из них. После того, как эти новые миссии приступят к работе, мы будем иметь более точные оценки размера и количества планет, существующих в нашей Галактике. А до тех пор их расчетное число обнадеживает: шансы на внеземной интеллект весьма высоки!
Загадочное пространство вокруг ближайшего космоса
Несколько веков назад, ученые полагали, что наш “Млечный
путь” — это центр мироздания. На самом деле, это всего лишь небольшая часть в
космическом пространстве. Во Вселенной существуют тысячи галактик различных
размеров, каждая из которых таит в себе множество тайн.
В 19-20 веках, все, что могли увидеть астрономы в свои
телескопы — это ближайший космос, то есть наш дом “Млечный путь”. Все,
непонятные и необъяснимые объекты зачисляли к одной галактике. В несовершенные
телескопы, все дальние тела казались расплывчатыми туманностями.
Впервые, доказать наличие других объектов, которые
расположены за пределами ближайшего космоса, удалось Эдвину Хабблу. Астроном,
используя усовершенствованный телескоп, сумел определить приблизительное расстояние от
Млечного пути до Андромеды. Оно было огромным, ввиду чего исключалась
принадлежность к ближайшему космосу. Это открытие позволило ученым “шире”
взглянуть на Вселенную и задуматься о наличии других миров.
Теория струн
Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.
Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.
Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.
Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.
Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.
Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.
3С 348 или Геркулес А
Расположенная приблизительно в двух миллиардах световых лет, желтоватая эллиптическая галактика Геркулес А выглядит довольно обычной в видимых длинах волн света, которые замечает телескоп Хаббл.
Галактика таит в себе центральную черную дыру с массой 2,5 миллиарда солнечной массы, которая в 1000 раз массивнее черной дыры в нашем Млечном Пути.
Но безобидно выглядящая галактика, также именуемая 3C 348, давно известна как самый яркий радиоизлучающий объект в созвездии Геркулеса. Излучая радиоволны почти в миллиард раз больше, чем наше Солнце, галактика является одним из самых ярких внегалактических радиоисточников на всем небе.
Структура Вселенной и ее размеры
На протяжении многих тысячелетий человечество считало, что Вселенная вечна и неизменна. Данная теория господствовала во всем в мире вплоть до начала ХХ столетия. Колоссальный переворот в науке о космическом пространстве произошел в 20-е годы прошлого века, благодаря таким ученым как Эйнштейн, Фридман и Хаббл. Именно они выдвинули предположения и доказали, что Вселенная – это целая система, которая живет своей жизнью и способна изменяться во времени, то есть расширяться или сжиматься.
В структуре Вселенной выделяют несколько уровней организации, каждый из которых отличается масштабом объектов:
Практически все космические тела в необъятной Вселенной формируют группы. Звезды группируются парами или входят в звездные скопления. В таких скоплениях могут содержаться десятки или даже сотни таких светил. Исключением считается Солнце, так как у него нет «двойника».
Двойная звезда Источник
Следующий уровень – галактики. Они бывают неправильной, линзовидной, спиральной и эллиптической формы. Вот только почему существует такая классификация, ученые еще не нашли ответ. В пределах одного галактического пространства есть черные дыры, межзвездный газ, темная материя, двойные звезды, пыль, электромагнитное излучение. Астрономы предполагают, что во Вселенной существуют сотни миллионов галактик.
Спиральная Галактика
Небольшое скопление галактик формируют Местную группу. Данный уровень организации считается одной из самых крупных и устойчивых структур. Все объекты в системе скопления галактик удерживаются гравитационной силой и еще каким-то фактором. Что это за фактор ученые пока не знают, но уверенны, что одной лишь силы гравитации для поддержания стабильности недостаточно. Скопление, в которое входит Млечный путь, Треугольник и Андромеда, включает еще 31 галактическую систему.
Скопление галактик в Персее Источник
Сверхскопление галактик – в составе такой структуры десятки или даже сотни галактических систем или их скоплений. Гравитационные силы здесь уже не такие сильные, поэтому сверхскопления движутся вместе с расширяющейся Вселенной.
Сверхскопление Волопаса Источник
На последнем уровне во Вселенной находятся ячейки, или пузыри. Их границы образуют сверхскопления галактик. Между этими структурами расположены пустотные области, которые получили название войды. Изучение войд, как и самых отдаленных частей Вселенной, происходит с помощью современных телескопов, одним из которых является телескоп Хаббла. В течение длительного времени, астрономы наблюдают за процессами, происходящими в космосе, изучают скопления и расположение звезд, после чего делаются определенные расчеты, строятся модели Вселенной, звездные карты и т.д.
Войд Волопаса Источник
Все структуры Вселенной являются уникальными и таинственными. Человечество уже гораздо лучше понимает, как устроено космическое пространство. Но с каждым новым открытием у ученых появляются и новые вопросы, ответы на которое порой не так легко найти.
Изучая размеры Вселенной, астрономы могут говорить только о ее видимой части, которую научно называют Метагалактикой. Чем больше сведений и знаний ученые получают о ней, тем больше становятся ее границы, причем они расширяются абсолютно во всех направлениях. Это говорит о сферической форме Вселенной.
Принято считать, что возраст Вселенной составляет 13,8 млрд. лет. Именно столько времени прошло с момента Большого Взрыва. Однако это только предположения, полученные в результате многолетней работы специалистов. Они основаны на наблюдениях и расчетах, но утверждать со 100% уверенностью, что Взрыв действительно был, нельзя. На сегодняшний день теория Большого Взрыва является общепринятой, так как именно она объясняет многие процессы, происходящие в космическом пространстве.Учитывая скорость света, ученые предполагают, что размеры Вселенной составляют также 13,8 млрд. световых лет. Скорей всего эта цифра не совсем точная, так как с момента зарождения пространство Вселенной все время расширяется. Некоторая его часть движется со сверхсветовой скоростью, из-за чего многие объекты навсегда останутся вне зоны видимости человека.
Математическая модель Вселенной Источник
Расстояния
Название | Галактика | Расстояние | Примечания |
---|---|---|---|
Ближайшая соседняя галактика | Карликовая галактика в созвездии Большого Пса | 25 тыс. св. лет | Открыта в 2003. Спутник Млечного Пути, медленно поглощаемый им. |
Самая отдаленная галактика | IOK-1 | z = 6,96 | Открыта в 2006. Наиболее далёкая общепризнанная галактика, для которой определено красное смещение. |
Ближайший квазар | 3C 273 | z = 0,158 | Первый идентифицированный квазар. |
Самый отдаленный квазар | CFHQS J2329-0301 | z = 6,43 | Открыт в 2007. |
Ближайшая радиогалактика | Центавр A (NGC 5128 , PKS 1322-427) | 13,7 млн св. лет | |
Самая отдалённая радиогалактика | TN J0924-2201 | z = 5,2 | |
Ближайшая сейфертовская галактика | Циркуль | 13 млн св. лет | Это также ближайшая сейфертовская галактика II типа. Ближайшая галактика I типа — NGC 4151. |
Самая отдалённая cейфертовская галактика | z = | ||
Ближайший блазар | Маркарян 421 (Mrk 421, Mkn 421, PKS 1101+384, LEDA 33452) | z = 0,03 | Это BL Lac object. |
Самый отдалённый блазар | Q0906+6930 | z = 5,47 | |
Ближайший BL Lac object | Маркарян 421 (Mkn 421, Mrk 421, PKS 1101+384, LEDA 33452) | z = 0,03 | |
Самый отдалённый BL Lac object | z = | ||
Ближайший LINER | |||
Самый отдалённый LINER | z = | ||
Ближайший LIRG | |||
Самый отдалённый LIRG | z = | ||
Ближайший ULIRG | IC 1127 (Arp 220 , APG 220) | z = 0,018 | |
Самый отдалённый ULIRG | z = | ||
Ближайщая галактика со вспышкой звездообразования | Галактика Сигара (M82, Arp 337/APG 337, 3C 231, Ursa Major A) | 3,2 Мпк |
Объекты, ошибочно принятые за галактики
«Галактика» | Объект | Дата | Примечания |
---|---|---|---|
G350.1-0.3 | Остаток сверхновой | Из-за своей необычной формы она первоначально была определена как галактика, но дальнейшие наблюдения показали, что это остаток сверхновой. |
Списки галактик
Местная группа
Галактика | Расстояние (млн. св. лет) | Созвездие | Тип |
---|---|---|---|
БМО | 0,168 | Золотая Рыба Столовая Гора | SBm |
ММО(NGC292) | 0,2 | Тукан | SBm |
NGC 6822 | 1,63 | Стрелец | IBm |
NGC 185 | 2,05 | Кассиопея | E |
NGC 147 | 2,2 | Кассиопея | dE5 |
M33 | 2,4 | Треугольник | Sc |
M31 | 2,5 | Андромеда | Sb |
M32 | 2,9 | Андромеда | E2 |
M110 | 2,9 | Андромеда | E5 |
NGC 3109 | 4,3 | Гидра | Sbm |
IC 342 | 10,7 | Жираф | Sab |
NGC 5128 | 12 | Центавр | S0 |
M81 | 12 | Большая Медведица | Sb |
M82 | 12 | Большая Медведица | Sd |
NGC 3077 | 12,8 | Большая Медведица | Sc |
ESO 97-G13 | 13 | Циркуль | SA(s)b |
M108 | 14,1 | Большая Медведица | Sd |
M83 | 15 | Гидра | Sc |
M94 | 16 | Гончие Псы | Sab |
M106 | 23,7 | Гончие Псы | SBbc |
M65 | 24 | Лев | Sa |
M64 | 24 | Волосы Вероники | Sab |
M101 | 27 | Большая Медведица | SA(sr)c |
M104 | 29,5 | Дева | Sa |
M74 | 30 | Рыбы | Sc |
M96 | 31 | Лев | SBab |
M105 | 32 | Лев | E1 |
NGC 5195 | 32 | Гончие Псы | S0 |
M95 | 32,6 | Лев | SBb |
M66 | 35 | Лев | Sb |
M51 | 37 | Гончие Псы | SAbc |
M63 | 37 | Гончие Псы | Sbc |
M109 | 46,3 | Большая Медведица | SBbc |
M88 | 47,5 | Волосы Вероники | Sb |
M49 | 49,5 | Дева | E2 |
M89 | 50 | Дева | E |
M61 | 52 | Дева | SBbc |
M100 | 52,5 | Волосы Вероники | SBbc |
M90 | 58,7 | Дева | SBab |
M85 | 60 | Волосы Вероники | S0-a |
M98 | 60 | Волосы Вероники | SBb |
M99 | 60 | Волосы Вероники | Sc |
M87 | 60 | Дева | E1 |
M59 | 60 | Дева | E5 |
M60 | 60 | Дева | E2 |
M84 | 60 | Дева | E1 |
M91 | 63 | Волосы Вероники | SBb |
M58 | 68 | Дева | SBb |
Страница: 0
en: List of galaxies
de: Liste der hellsten Galaxien
Примечания
- Sky and Telescope, New Stars in a Galaxy’s Wake, 28 September 2007
- NASA, ‘Orphan’ Stars Found in Long Galaxy Tail, 09.20.07
- arXiv, H-alpha tail, intracluster HII regions and star-formation: ESO137-001 in Abell 3627, Fri, 8 June 2007 17:50:48 GMT
- Universe Today, Galaxy Leaves New Stars Behind in its Death Plunge ; September 20th, 2007
- Astronomy Knowledge Base, , UOttawa
- SEDS, The Large Magellanic Cloud, LMC
- SEDS, The Small Magellanic Cloud, SMC
- UPI, Black hole found in Omega Centauri ,April 10, 2008 at 2:07 PM
- Dave Snyder. University Lowbrow Astronomers Naked Eye Observer’s Guide. Umich.edu (February, 2000). Проверено 1 ноября 2008.
- ↑ Farthest Naked Eye Object. Uitti.net. Проверено 1 ноября 2008.
- SEDS, Messier 33
- SEDS, Messier 81
- Astrophys. J., 55, 406—410 (1922)
- Astrophysical Journal, Centennial Issue, Vol. 525C, p. 569 ; Baade & Minkowski’s Identification of Radio Sources ; 1999ApJ…525C.569B
- SEDS, Seyfert Galaxies
- Astronomy and Astrophysics, v.357, p.L45-L48 (2000) III Zw 2, the first superluminal jet in a Seyfert galaxy ; 2000A&A…357L..45B
- SEDS, Lord Rosse’s drawings of M51, his «Question Mark» «Spiral Nebula»
- Sub-parsec-scale structure and evolution in Centaurus AIntroduction ; Tue November 26 15:27:29 PST 1996
- ↑ The 2006 Giant Flare in PKS 2155—304 and Unidentified TeV Sources
- ↑ Julie McEnery. Time Variability of the TeV Gamma-Ray Emission from Markarian 421. Iac.es. Проверено 1 ноября 2008.
- bNet, Ablaze from afar: astronomers may have identified the most distant «blazar» yet, Sept, 2004
- arXiv, Q0906+6930: The Highest-Redshift Blazar, 9 June 2004
- Monthly Notices of the Royal Astronomical Society, Volume 384, Issue 3, pp. 875—885 ; Optical spectroscopy of Arp220: the star formation history of the closest ULIRG ; 03/2008 ; 2008MNRAS.384..875R
- Chandra Proposal ID #01700041 ; ACIS Imaging of the Starburst Galaxy M82 ; 09/1999 ; 1999cxo..prop..362M
- ; 2001 ; ISBN 3-540-41472-X
Происхождение Вселенной
Современные астрономические наблюдения позволяют предположить, что начало Вселенной около десяти миллиардов лет назад было огромным огненным шаром, раскаленным и плотным. Его состав довольно прост. Этот огненный шар был настолько горячим, что состоял только из свободных элементарных частиц, которые быстро двигались, когда они сталкивались друг с другом.
Существует несколько теорий эволюции. Теория пульсирующей вселенной утверждает, что наш мир был создан гигантским взрывом. Но расширение Вселенной не будет длиться вечно, потому что гравитация остановит его.
Согласно этой теории, наша Вселенная расширялась в течение 18 миллиардов лет после взрыва. В будущем расширение полностью замедлится и будет остановлено. И тогда вселенная начнет сжиматься, пока материя снова не сжимается и не произойдет еще один взрыв.
Теория стационарного взрыва: Согласно этой теории, у Вселенной нет ни начала, ни конца. Он постоянно в одном и том же состоянии. Новый вихрь постоянно формируется, чтобы сбалансировать материю в далеких галактиках. По этой причине вселенная всегда одна и та же, но если вселенная, начавшаяся со взрыва, расширится до бесконечности, то она постепенно остынет и полностью исчезнет.
Но пока ни одна из этих теорий не может быть доказана, потому что нет точных доказательств хотя бы для одной из теорий.
Однако следует отметить, что существует и другая теория (принцип).
Антропогенный (человеческий) принцип был впервые сформулирован в 1960 году Г.И. Иглисом. Но он вроде как неофициальный автор книги. А официальным автором был ученый по имени Картер.
Антропийский принцип гласит, что Вселенная — это то, что она есть, потому что есть наблюдатель или она должна появиться на определенной стадии развития. Создатели этой теории принесли очень интересные факты, чтобы доказать это. Такова критичность фундаментальных констант и совпадение большого числа. Получается, что они полностью взаимосвязаны, и их малейшее изменение приведет к полному хаосу. Тот факт, что такое явное совпадение, даже закономерность можно увидеть, дает этой довольно интересной теории шанс на жизнь.
Ближайшие миры
Небесные тела, которые просматриваются
в телескопы — это сравнительно молодые объекты. К ним относятся наш Млечный
путь и его ближайший соседи. В его окружении находится 54 галактики. Самым
близкими соседями являются карликовая системы, которые расположены в созвездиях
Стрельца и Большого Пса. Их масса в 300 раз меньше Млечного пути. Они
расположились на расстоянии в 42000 световых лет от центра нашей галактики. В
карликовых системах насчитывается всего несколько миллиардов звезд. Со
временем, они могут соединяются между собой либо их могут поглотить более
крупные объекты.
Скорость расширения Вселенной
составляет 20 км/с, что приводит к неизбежному столкновению различных систем.
Ближайшей спиральной галактикой
является Андромеда. Она в три раза больше Млечного пути и находиться на
расстоянии в 2,52 млн световых лет от нашей Земли. Диаметр этой огромной
системы составляет шесть миллионов световых лет. Она состоит из темной материи,
также в ее составе насчитываются триллионы звезд.
Линзовидные и спиральные галактики
Линзовидные галактики имеют форму диска, без спиральных рукавов, но могут иметь перемычку. Их номенклатура — S0 или SB0, и они находятся прямо на развилке рисунка. В зависимости от количества пыли (высокопоглощающих зон) на вашем диске они подразделяются на S01, SB01 — S03 и SB03.
S-галактики — это правильные спиральные галактики, а SB — спиральные галактики с перемычкой, поскольку кажется, что спирали выступают из перемычки через центральную выпуклость. Подавляющее большинство галактик имеют такую форму.
Оба класса галактик, в свою очередь, различаются степенью легкости спиральных рукавов и отмечены строчными буквами. Они определяются путем сравнения размера самой большой выпуклости с длиной диска: L выпуклость / L диск.
Например, если это частное составляет ≈ 0,3, галактики обозначаются как Sa, если это простая спираль, или SBa, если она закрыта. На них спирали кажутся более плотными, а концентрация звезд в рукавах более разреженной.
По мере того как последовательность продолжается вправо, спирали кажутся более рыхлыми. Отношение балдж / диск этих галактик: L балдж / L диск ≈ 0,05.
Если у галактики промежуточные характеристики, можно добавить до двух строчных букв. Например, Млечный Путь классифицируется некоторыми как SBbc.
NGC 1275 или Персей А
NGC 1275 – это гигантская эллиптическая галактика, расположенная в центре скопления галактик Персей. На снимках можно разглядеть полосы пыли из отдельной спиральной галактики. Она находится частично перед NGC 1275 и была полностью разрушена приливно-гравитационными силами внутри скопления галактики Персей.
На снимках видны несколько ярких нитей синих новорожденных звезд. Наблюдая за нитевидной структурой, астрономы впервые смогли оценить напряженность магнитного поля. Используя эту информацию, они выяснили, как внегалактические магнитные поля поддерживали структуру филаментов против коллапса, вызванного гравитационными силами или поглощением окружающего скопления галактик в течение их жизни в 100 миллионов лет.
Это стало возможно благодаря снимкам, сделанным с помощью усовершенствованной камеры для съемок (ACS) космического телескопа Хаббла NASA / ESA в июле и августе 2006 года.
Понятие темной энергии
В астрономии понятие темное энергии включает в себя энергию (существующую в теории), которая была введена в математическую модель Вселенной, чтобы объяснить ее расширение с ускорением. Ученые предполагают, что эта энергия не способна собираться в сгустки (в отличие от темной материи), а равномерно распределяется по всем просторам Вселенной. Темная энергия присутствует в галактиках, в галактических скоплениях, а также за их пределами. Интересным является тот факт, что она действует против гравитационных сил, то есть испытывает антигравитацию.
С помощью современных астрономических технологий ученые способны не только измерить скорость расширения Вселенной, но и проанализировать, как этот процесс изменялся со временем. Дело в том, что ускорение расширения Вселенной только растет, что позволяет говорить об антигравитационных силах. Если бы в космическом пространстве гравитация была стандартной, то со временем отдаление галактик друг от друга замедлялось бы.
Астрономы предполагают, что темной энергией может выступать вакуум. Его плотность не изменяется во время расширения Вселенной, что может означать его отрицательное давление. Также есть мнение, что темная энергия – это сверхслабое поле, которое пронизывает все пространство Вселенной, научно его называют «квинтэссенция».
К сожалению, на сегодняшний день не существует возможности в земных условиях экспериментально исследовать темную энергию. Но это не означает, что в будущем человечество не сможет объяснить природу данного явления или выяснить другие причины, способствующие такому быстрому ускорению расширения Вселенной.
Величие
Всем известно, что Вселенная велика. На сколько миллионов световых лет она простирается?
Астрономы тщательно изучают космическое излучение микроволнового фона — послесвечения Большого взрыва. Они ищут связь между тем, что происходит на одной стороне неба, и тем, что на другой. И пока нет никаких доказательств, что там есть что-то общее. Это означает, что на протяжении 13,8 миллиардов лет в любом направлении Вселенная не повторяется. Столько нужно времени свету, чтобы он достиг хотя бы видимого края этого пространства.
Нас все еще волнует вопрос, что находится за пределом Вселенной, которую можно наблюдать. Астрономы допускают, что космос бесконечен. «Вещество» в нем (энергия, галактики и т. д.) распределено точно таким же образом, как и в наблюдаемой Вселенной. Если это действительно так, тогда появляются разные аномалии того, что находится на краю.
За пределами объема Хаббла расположено не просто больше разных планет. Там можно найти вообще все, что только может существовать. Если продвинуться достаточно далеко, можно даже найти другую солнечную систему с Землей, идентичной во всех отношениях, за исключением того, что у вас была на завтрак каша вместо яичницы. Или завтрак отсутствовал вовсе. Или, допустим, вы встали пораньше и ограбили банк.
На самом деле космологи считают, что, если пройти достаточно далеко, то можно найти еще одну сферу Хаббла, которая совершенно идентична нашей. Большинство ученых считают, что известная нам Вселенная имеет границы. Что за их пределом, остается величайшей загадкой.
Ближайшие миры
Небесные тела, которые просматриваются в телескопы — это сравнительно молодые объекты. К ним относятся наш Млечный путь и его ближайший соседи. В его окружении находится 54 галактики. Самым близкими соседями являются карликовая системы, которые расположены в созвездиях
Стрельца и Большого Пса. Их масса в 300 раз меньше Млечного пути. Они расположились на расстоянии в 42000 световых лет от центра нашей галактики. В карликовых системах насчитывается всего несколько миллиардов звезд. Со временем, они могут соединяются между собой либо их могут поглотить более крупные объекты.
Скорость расширения Вселенной составляет 20 км/с, что приводит к неизбежному столкновению различных систем.
Ближайшей спиральной галактикой является Андромеда. Она в три раза больше Млечного пути и находиться на расстоянии в 2,52 млн световых лет от нашей Земли. Диаметр этой огромной системы составляет шесть миллионов световых лет. Она состоит из темной материи, также в ее составе насчитываются триллионы звезд.
Интересные факты
Познавательная информация о галактиках:
- Количество объектов внутри скоплений всегда разное. В среднем в каждом образовании находится от нескольких миллионов звезд.
- Есть предположение, что в центре каждой системы существует черная дыра, которая считается ядром и основным источником гравитационного притяжения.
- Прямо сейчас Млечный Путь поглощает карликовую галактику — Гнома-Стрельца.
- Основную массу галактик (около 90%) составляет темная материя.
- Диаметр галактик измеряется килопарсеками. Например, размер Млечного пути — 30 кП, а самой большой из всех зафиксированных — свыше 600 кП.
- Галактики так быстро отдаляются друг от друга, что через несколько миллиардов лет их нельзя будет наблюдать с Земли.
- При взаимодействии 2 систем вероятность столкновения внутренних объектов минимальна (причина тому — большое расстояние).
- Млечный Путь относится к карликовым образованиям, считается спутником галактики-гиганта.
- Системы постоянно увеличивают свой размер и массу. Расширение происходит 2 способами: путем втягивания из пространства газов и частиц пыли или с помощью столкновений и слияний друг с другом.
Светимость галактик измеряется в Lс и определяется количеством находящихся в них звезд. Существуют небольшие объекты с излучением в несколько миллионов Lс и гигантские системы с показателем в миллиарды Солнц.
Краткие итоги исследования
Мы исследовали фундаментальный вопрос о распределение плотности галактик во Вселенной. Мы анализируем эту задачу
несколькоми способами и обсуждаем последствия для эволюции галактики и космологии. Мы используем недавно полученные
массовые
функции
для галактик до z ∼ 8 для определения распределения плотности галактик во Вселенной. Наш основной вывод заключается
в том, что плотность числа галактик уменьшается с течением времени как $\phi_T(z) \sim t^{-1}$, где t – возраст
Вселенной.
Далее мы обсуждаем последствия этого увеличения плотности числа галактик с
ретроспективного взгляда назад для множества ключевых астрофизических вопросов. Интегрируя плотность числа галактик
мы рассчитали количество
галактик во Вселенной,
значение которого составило $2.0 {+0.7\choose -0.6} \times {10^{12}}$ для $z = 8$, которое в принципе можно
наблюдать. Это примерно в десять раз больше, чем при прямом подсчете. Это означает, что нам еще предстоит
обнаружить большую
популяцию слабых далеких галактик.
В терминах астрофизической эволюции галактик мы показываем, что увеличение интегрируемых функций масс всех
галактик с красным смещением объясняется моделью слияния. Мы показываем, что простая модель слияния способна
воспроизводить снижение
числа галактик с временным масштабом слияния $\tau=1.29 ± 0.35 Gyr$. Полученная скорость слияния при z = 1.5
составляет R ∼ 0.05 слияний $Gyr^{−1}
Mpc^{−3}$, близко к значению, полученному при структурном и парном анализе. Большинство из этих сходящихся галактик
представляют собой системы с более низкой массой, увеличивающие со временем плотность числа галактик с нижнего
предела до
более высоких масс при вычислении общей плотности.
Наконец, мы обсуждаем последствия наших результатов для будущих исследований.
В будущем, поскольку функции масс становятся более известными благодаря лучшему моделированию SED и более глубоким
и более широким данным с JWST и Euclid / LSST, мы сможем более точно измерить общую плотность числа галактик и,
таким
образом, получить лучшую меру этой фундаментальной величины.
Заключение
Открытие различных эволюционных процессов в различных системах и телах, составляющих Вселенную, позволило изучить законы эволюции Космоса на основе данных наблюдений и теоретических расчетов.
Очевидно, что вторая характеристика может быть определена только на основе теоретических расчетов. Обычно первое из приведенных значений называется возрастом, а второе — ожидаемой продолжительностью жизни.
Тот факт, что галактики, составляющие метаглактику, взаимно далеки друг от друга, говорит о том, что некоторое время назад она находилась в качественно ином состоянии и была более плотной.
Сегодня астрофизики с полным основанием называют золотой век астрофизики — удивительные и по большей части неожиданные открытия в мире звезд следуют друг за другом. В последнее время Солнечная система является объектом прямых экспериментальных, а не только наблюдательных исследований. Полеты межпланетных космических станций, орбитальных лабораторий, экспедиции на Луну принесли много новых специфических открытий о Земле, околоземном пространстве, планетах и Солнце.
Исследование Вселенной, даже той ее части, которая нам известна, является огромной задачей. Потребовалось много поколений, чтобы получить информацию, которой обладают современные ученые.