Сколько планет в нашей солнечной системе?

Малые объекты

Пояс Койпера

Пояс Койпера — область реликтов времён образования Солнечной системы, является большим поясом осколков, подобным поясу астероидов, но состоит в основном изо льда. Простирается между 30 и 55 а. е. от Солнца. Составлен главным образом малыми телами Солнечной системы, но многие из крупнейших объектов пояса Койпера, такие как Квавар, Варуна и Орк, могут быть переклассифицированы в карликовые планеты после уточнения их параметров. Здесь сосредоточена масса малых тел, льдов.

Они состоят из метана, аммиака и воды, но есть объекты, включающие в себя горные породы и металлы.

Астероиды

Астероиды — самые распространённые малые тела Солнечной системы.

Пояс астероидов занимает орбиту между Марсом и Юпитером.  Согласно современным воззрениям, астероиды — это остатки формирования Солнечной системы, которые были не в состоянии объединиться в крупное тело из-за гравитационных возмущений Юпитера.

Размеры астероидов варьируются от нескольких метров до сотен километров. Среди них есть как совсем мелкие, так и крупные, например, Веста и Гигея, Они даже могут быть переклассифицированы как карликовые планеты, если будет показано, что они поддерживают гидростатическое равновесие.

Пояс содержит десятки тысяч, возможно, миллионы объектов больше одного километра в диаметре. Несмотря на это, общая масса астероидов пояса вряд ли больше одной тысячной массы Земли.

Метеоры и метеориты

Космические объекты малых размеров, периодически врывающиеся в атмосферный слой Земли, до момента падения называются метеоритами. В момент попадания в земную атмосферу их переквалифицируют в метеоры. Они сгорают в воздухе до падения, небольшая часть падает на поверхность.

Кометы

Если перевести это слово с греческого, получится «длинноволосый». И это так. Когда ледяная странница приближается к Солнцу, она распускает длинный хвост из испаряющихся газов на сотни миллионов километров.

Комета имеет и голову, состоящую из ядра и комы. Ядро – ледяная глыба из застывших газов с добавками силикатов и частиц металлов. Возможно, что присутствует и некая органика. Кома – это газопылевое окружение кометы.

Планеты гиганты

Минуя пояс астероидов, мы заканчиваем знакомство с планетами земного типа, и начинаем знакомство с далекими газовыми гигантами, которые удалены от Солнца и имеют более суровые условия со своими интересными особенностями.

Юпитер

Начнем с самой массивной планеты – Юпитер, обладающей мощной атмосферой и самой большой скоростью вращения. Твердой поверхности он не имеет и обладает небольшой плотностью из-за своего газового состава. Насчитывает 67 спутников. Имеет кольцевую систему, но значительно уступающую кольцам Сатурна. Характерно наличие бушующих ветров, и отличительной особенностью Юпитера является Большое Красное Пятно – мощный шторм, который бушует уже на протяжении 400 лет. По своей яркости Юпитер уступает лишь Солнцу, Луне и Венере.

Сатурн

На 6-м месте от центра Солнечной системы обитает легко узнаваемый Сатурн. Именно эта планета обладает шикарной кольцевой системой, сформированной ледяными глыбами. Эта особенность хорошо заметна из космоса, выглядит очень красиво. По своим размерам уступает лишь Юпитеру, но при этом планета является самой легкой из-за низкой плотности. Поверхности не имеет и очень враждебна к любым формам жизни. Насчитывает 62 спутника. Из-за наклона своей оси выражена сезонность, как и на нашей планете. Сатурн — обладатель самых быстрых ветров во всей Солнечной системе.

 Рис. 5. Схема расположения планет относительно Солнца

Уран

Удаляясь от Солнца все дальше, мы приблизились к седьмой планете – Уран, самой холодной, покрытой льдом и завораживающей своим голубым сиянием. Особенностью данной планеты является то, что из-за большого угла наклона оси, она движется по орбите боком. Так же, как и у других гигантов, отсутствует твердая поверхность, бывают сильные ураганы. Уран окружают малозаметные кольца и 27 спутников.

Нептун

Завершает наше знакомство самая далекая восьмая планета синего цвета — Нептун, обнаруженная из-за своей удаленности от Земли и Солнца относительно недавно. Среди ледяных гигантов она самая маленькая. В наличии 5 колец и 14 спутников. Характерны вихри с огромными скоростями.  

Открытие и присвоение имён

В 1801 году итальянский священник Джузеппе Пьяцци, изучающий астрономию, случайно обнаружил первый и самый большой астероид Церера, вращающийся между Марсом и Юпитером. Хотя Церера сегодня классифицируется как карликовая планета, на её долю приходится четверть всей массы всех известных астероидов.

За первую половину XIX века несколько небесных тел были обнаружены и классифицированы как планеты. Уильям Гершель придумал термин «астероид» (звездоподобный) в 1802 году, но другие учёные называли найденные объекты малыми планетами. К 1851 году появилось 15 новых тел, и процесс именования был перенесён на числа, при этом Церера была обозначена как (1) Церера. Сегодня Церера имеет двойное обозначение как астероид и карликовая планета, а остальные остаются астероидами.

Планеты Солнечной системы по порядку

Планеты Солнечной системы по порядку расположены в такой последовательности:
1 — Меркурий. Самая маленькая из настоящих планет Солнечной системы
2 — Венера. Описание ада бралось с неё: страшная жара, испарения серы и извержения множества вулканов.
3 — Земля. Третья планета по порядку от Солнца, наш дом.
4 — Марс. Самая дальняя из планет земной группы Солнечной системы.
Затем расположен Главный пояс астероидов, где находятся карликовая планета Церера и малые планеты Веста, Паллада и др.
Далее по порядку идут четыре планеты-гиганта:
5 — Юпитер. Самая большая планета Солнечной системы.
6 — Сатурн со своими знаменитыми кольцами.
7 — Уран. Самая холодная планета.
8 — Нептун. Это самая дальняя «настоящая» планета по порядку от Солнца.
А вот дальше любопытно:
9 — Плутон. Карликовая планета, которая обычно упоминается после Нептуна.
Но, орбита Плутона такова, что иногда он находится ближе к Солнцу, чем Нептун. Например так было с 1979 по 1999 год.
Нет, Нептун и Плутон не могут столкнуться :) — их орбиты таковы, что не пересекаются.


Расположение планет Солнечной системы по порядку на фото:

Влияние на Землю

С тех пор как Земля образовалась около 4,5 миллиарда лет назад, астероиды и кометы постоянно врезались в неё. Когда Земля сформировалась, она была сухой и бесплодной. Столкновения астероидов и комет, возможно, привели к попаданию на планету водяного льда и других молекул углерода.

Астероиды содержат следы аминокислот и органических соединений, и некоторые предполагают, что удары астероидов, возможно, привели к тому, что на ранней Земле появились химические вещества, необходимые для инициации жизни, или даже могли принести саму жизнь на Землю. В то же время частые столкновения влияли на эволюцию, одни виды выживали, а другие исчезали.

Ледяные гиганты

Наконец, две самые далекие планеты: Нептун и Уран. Их называют ледяными гигантами, поскольку основная масса этих планет связана с веществом, которое могут образовывать льды. Это и просто вода, и метан, аммиак, углекислый газ. В планетной физике их традиционно относят ко льдам, потому что при низких температурах они могут в него превращаться. Уран и Нептун — плохо изученные планеты, потому что они находятся далеко от Земли. До сих пор не было создано никакого специализированного аппарата, который исследовал хотя бы одну из этих планет. А это очень интересно, в том числе с точки зрения истории формирования Солнечной системы.

Нептун

(Фото: NASA)

Например, во многих современных моделях Уран и Нептун когда-то поменялись местами. И есть, по крайней мере, один очень понятный аргумент. Юпитер массивней Сатурна, Сатурн массивней Урана, а вот Уран легче Нептуна — получается, что планеты стоят «не по росту». Предполагается, что они следовали общему тренду на падение массы. Но в процессе ранней эволюции Нептун и Уран поменялся местами. Вообще в образовании Солнечной системы есть еще много белых пятен. Но любопытно, что разобраться в этом, скорей всего, можно, изучая не планеты, не Солнце, не спутники, а астероиды.

Уран

(Фото: NASA)

Планеты земного типа

Далее рассмотрим по порядку, как в алфавите, другие планеты Солнечной системы.

Меркурий

Ближайшая к Солнцу планета – Меркурий. Также Меркурий самая маленькая из 8 планет и довольно быстрая, но при этом достаточно тяжелая, так как внутри нее находится огромное железное ядро. Поверхность покрыта кратерами и древними лавовыми потоками. Атмосфера разряженная, состоящая из частичек Солнечного ветра.

Венера

Второе место от Солнца занимает Венера. Она имеет похожие параметры массы и размеров с Землей, благодаря чему ее именуют близнецом нашей планеты. Однако давление и температура на ней гораздо выше, что создает непригодные условия для жизни организмов. Эта планета ярче любой звезды, и уступает по яркости лишь Солнцу и Луне.Вращается Венера медленно по часовой стрелке. Спутников у нее нет. Благодаря активной вулканической деятельности почти не имеет кратеров.

Марс

Далее по курсу после нашей планеты — Марс, который занимает четвертое место относительно Солнца. Размеры его невелики, как и у остальных представителей земной группы. Строение Марса имеет некоторые сходства со строением Земли, но воздух на второй планете не пригоден для земного человека. Погодные условия Марса очень суровые, воздух сухой, поверхностные водные ресурсы на планете не обнаружены, но под поверхностью находятся огромные залежи льда.
Рис. 4. Международная космическая станцияИнтересна эта планета и тем, что именно на ней располагается самая высокая вершина во всей Солнечной системе – вулкан Олимп, высота которого около 27 км. Эта планета активно исследуется учеными на наличие жизни.

Состав пояса Койпера

На этом расстоянии
солнечное тепло намного слабее, чем на Земле, и поэтому температура на этих
объектах чрезвычайно низкая. Мы можем определить их состав дистанционно с
помощью телескопов и спектрального анализа, изучая отраженный свет. Результаты
изучения показали, что большинство фрагментов поясной области состоят из
твердого метана, аммиака и льда. Хотя эти объекты не были видны напрямую,
компьютерные модели показали, что наиболее крупные из них могут иметь легкую
метановую атмосферу. По составу пояс Койпера делится на:

  • Классические объекты.  От остальных их отличает наклонность орбиты и
    четкая круглая форма. Эти тела – «кьюбивано», существующие независимо от
    движения планет. Четырнадцать лет назад «кьюбивано» можно было насчитать
    порядка 524 штук.
  • Резонансные объекты. Это тела, образующие
    орбитальный резонанс непосредственно с Нептуном. Таких в общей массе примерно
    10-20%
  • Рассеянные объекты. У них большой
    орбитальный эксцентриситет, позволяющий удаляться от небесного светила на
    расстояние нескольких астрономических единиц. Некоторые представители науки
    рассматривают эти тела как отдельно существующую субстанцию и причисляют их к
    транснептуновым образованиям.

Астероид 2004 yh32 — кентавр и
дамоклоид, вращающийся вокруг дневного светила с очень высоким наклоном почти
80 градусов, также принадлежит поясу Койпера.

Облако Оорта — родина долгопериодических комет

Хотя вопрос о происхождении (и даже существовании) Облака Оорта все еще не решен, находчивые астрономы использовали данные об орбитах наблюдаемых долгопериодических комет, таких как комета Галлея, в качестве основы для формирования представления о том, что все долгопериодические кометы, а также «кентавры» и «семейные кометы Юпитера» берут свое начало в Облаке Оорта.

Считается, что большинство короткопериодических комет происходит из рассеянного диска (не является частью облака Оорта), но, вполне возможно, что изначальным местом их рождения были внешние области Облака Оорта.

Облако Оорта всего в пять раз массивнее Земли

Применив сложное компьютерное моделирование, ученые подсчитали, что Облако Оорта содержит по крайней мере несколько триллионов объектов, диаметр которых превышает один километр, и еще несколько миллиардов объектов диаметром около 20 километров. И это при том, что все эти объекты в среднем удалены на десятки миллионов километров друг от друга. Хотя полная масса Облака Оорта доподлинно неизвестна, расчеты, основанные на массе кометы Галлея (предполагаемой кометы Облака Оорта), позволили предположить, что общая масса объектов Облака Оорта составляет около 3 x 10^25 килограммов, что примерно в пять раз больше массы нашей планеты.

Схема подключения модуля

Клик для увеличения схемы

После снятия задней стенки можно получить доступ к печатной плате устройства.

В качестве аккумулятора была выбрана батарея 12 В емкостью 1,2 А/ч, потому, что она у автора была. На самом деле в ясный солнечный день панель сможет зарядить 2-3 таких аккумулятора. Для уменьшения опасности короткого замыкания в цепь аккумулятора включен плавкий предохранитель. Для недопущения разряда аккумулятора через солнечную панель при малом освещении последовательно с панель включен диод Шотки типа IN5817. Когда аккумулятор полностью заряжен ток, отбираемый от солнечной батареи, составляет около 50 мА, при напряжении 19 В.

В качестве тестовой нагрузки использована самодельная светодиодная фитолампа на 4-х последовательно включенных фитосветодиода мощностью 1 Вт, последовательно со светодиодами включен резистор типа МЛТ-2, сопротивлением 30 Ом. При напряжении 12,6 В, ток потребляемый лампой составит около 60 мА. Таким образом аккумулятор на 1,2 А*ч позволяет питать эту лампу около 20 часов.

В целом собранная автономная конструкция оказалась вполне работоспособной с технической точки зрения. Но с экономической точки зрения, учитывая стоимость солнечной батареи, аккумулятора и блока управления картина получается безрадостной. Солнечная батарея стоит 2700 р, аккумулятор 12 В 1,2 А/ч стоит около 500 р, блок управления 400 р. Так же автор пробовал использовать два последовательно включенных аккумулятора 6 В 12 А/ч (они будут иметь стоимость около 3000 р), такой аккумулятор у автора заряжается за 3-4 солнечных дня, при этом ток зарядки доходит до 270 мА.

Общая стоимость использованного оборудования в минимальной комплектации 3600 р. Как несложно видеть, данная фитолампа потребляет около 0,8 Вт. При тарифе 3,5 р за 1 кВт/ч, лампа должна работать от сети при КПД источника питания 50%, около 640000 ч или 73 года только для того, что бы можно было оправдать затраты на оборудование. При этом за такой промежуток времени, несомненно, придется несколько раз полностью сменить оборудование, деградацию аккумулятора и фотоэлементов ни кто не отменял.

Знакомство с Солнечной системой

Солнечная система является частью спиралевидной галактики — Млечного пути. В самом ее центре находится Солнце – самый большой обитатель Солнечной системы. Солнце – это горячая звезда, состоящая из газов – водорода и гелия. Оно производит огромное количество тепла и энергии, без которых жизнь на нашей планете была бы просто невозможна. Солнечная система возникла пять млрд. лет назад в результате сжатия газопылевого облака.

Млечный путь

Центральное тело нашей планетной системы — Солнце (по астрономической классификации — желтый карлик), сосредоточило в себе 99,866% всей массы Солнечной системы. Оставшиеся 0,134% вещества представлены девятью большими планетами и несколькими десятками их спутников (в настоящее время их открыто более 100), малыми планетами — астероидами (примерно 100 тысяч), кометами (около 1011 объектов), огромным количеством мелких фрагментов — метеороидов и космической пылью. Все эти объекты объединены в общую систему мощной силой притяжения превосходящей массы Солнца.

Планеты земной группы составляют внутреннюю часть Солнечной системы. Планеты-гиганты образуют ее внешнюю часть. Промежуточное положение занимает пояс астероидов, в котором сосредоточена большая часть малых планет.

Фундаментальной особенностью строения Солнечной системы является то, что все планеты обращаются вокруг Солнца в одном направлении, совпадающем с направлением осевого вращения Солнца, и в том же направлении они обращаются вокруг своей оси. Исключение составляют Венера, Уран и Плутон, осевое вращение которых противоположно солнечному. Существует корреляция между массой планеты и скоростью осевого вращения. В качестве примеров достаточно упомянуть Меркурий, сутки которого составляют около 59 земных суток, и Юпитер, который успевает сделать полный оборот вокруг своей оси менее, чем за 10 часов.

Планеты солнечной системы

Сколько существует планет?

Планеты и их спутники:

  1. Меркурий,
  2. Венера,
  3. Земля (спутник Луна),
  4. Марс (спутники Фобос и Деймос),
  5. Юпитер (63 спутника),
  6. Сатурн (49 спутника и кольца),
  7. Уран (27 спутника),
  8. Нептун (13 спутников).
  • Астероиды,
  • Объекты пояса Койпера (Квавар и Иксион),
  • Карликовые планеты (Церера, Плутон, Эрида),
  • Объекты облака Орта (Седна, Оркус),
  • Кометы (комета Галлея),
  • Метеорные тела.

Чем отличается земная группа?

К планетам земной группы традиционно относят Меркурий, Венеру, Землю и Марс (в порядке удаления от Солнца). Орбиты этих четырёх планет расположены до Главного пояса астероидов. Эти планеты объединяют в одну группу также из-за схожести их физических свойств — они имеют небольшие размеры и массы, средняя плотность их в несколько раз превосходит плотность воды, они медленно вращаются вокруг своих осей, у них мало или совсем нет спутников (у Земли — один, у Марса — два, у Меркурия и Венеры — ни одного).

Планеты земного типа или группы отличаются от планет-гигантов меньшими размерами, меньшей массой, большей плотностью, более медленным вращением, гораздо более разрежёнными атмосферами (на Меркурии атмосфера практически отсутствует, поэтому его дневное полушарие сильно накаляется. Температура у планет земной группы значительно выше чем у гигантов (на Венере до плюс 500 С). Элементные составы планет земной группы и планет-гигантов также резко отличаются друг от друга. Юпитер и Сатурн состоят их водорода и гелия примерно в той же пропорции, что и Солнце. У планет земной группы имеется много тяжелых элементов. Земля в основном состоит из железа (35 %), кислорода (29 %) и кремния (15 %). Наиболее распространенные соединения в коре — окислы алюминия и кремния. Таким образом, элементный состав Земли резко отличается от солнечного.

Какие есть планеты-гиганты?

К планетам-гигантам относятся Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают большими размерами, но небольшой плотностью из-за своего газового состава из водорода и гелия. Тем не менее примерно 98 % суммарной массы планет Солнечной системы приходится на массу планет-гигантов!  Тепловой поток из центра Юпитера и Сатурна немного превосходит поток энергии, получаемой планетой от Солнца, тогда как тепловой поток из центра Земли пренебрежимо мал по сравнению с потоком энергии, получаемой Землей от Солнца.Эти планеты удалены на большие расстояния от Солнца, поэтому самые дальние из них — Нептун и Уран, содержат большое количество льда и именуются ледяными гигантами.

Размеры планет солнечной системы

Планеты данного типа обладают большим количеством спутников, в отличие от планет земной группы, и обладают высокой скоростью вращения. Спутниками называются небольшие тела, вращающиеся вокруг планет. Область между планетами наполнена небольшими твердыми частицами и разреженными газами.

Возникновение

Поскольку Солнечной системе миллиарды лет, люди могут лишь строить гипотезы о способах ее появления. Наиболее популярной является небулярная теория, выдвинутая учеными Лапласом, Кантом и Сведенборгом в XVIII веке. Она строится на том, что система образовалась за счет гравитационного коллапса одной из частей огромного облака, состоящего из газа и пыли. В будущем гипотеза дополнялась за счет данных, полученных при исследовании космоса.

Сейчас процесс возникновения Солнечной системы описывается следующими шагами:

  1. Изначально в этой области вселенной находилось облако, состоящее из гелия, водорода и других веществ, полученных при взрывах старых звезд. В небольшой его части началось уплотнение, ставшее центром гравитационного коллапса. Он постепенно начал притягивать к себе окружающие вещества.
  2. Из-за притяжения веществ размеры облака начали уменьшаться, при этом росла скорость вращения. Постепенно его форма превратилась в диск.
  3. По мере сжатия увеличивалась плотность частиц на единицу объема, что приводило к постепенному нагреву вещества за счет частых столкновений молекул.
  4. Когда центр гравитационного коллапса разогрелся до нескольких тысяч кельвинов, он начал светиться, что означало образование протозвезды. Параллельно с этим, в разных областях диска начали появляться другие уплотнения, которые в будущем послужат гравитационными центрами для образования планет.
  5. Финальный этап формирования солнечной системы начался в период, когда температура центра протозвезды превысила несколько миллионов кельвинов. Тогда гелий и водород вступили в реакцию термоядерного синтеза, что привело к появлению полноценной звезды. Остальные уплотнения диска постепенно сформировались в планеты, которые начали вращаться в одном направлении вокруг Солнца, находясь на одной плоскости.

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Состав Солнечной системы

В состав Солнечной системы входят следующие космические объекты:

  • планеты и их спутники;
  • блуждающие кометы;
  • пояса астероидов;
  • метеоры;
  • кентавры;
  • туманности;
  • карликовые планеты.

Некоторых вводит в замешательство вопрос «сколько планет в Солнечной системе?». Это связано с тем что в 2006 году Плутон был переведен в разряд карликовых планет. На данный момент в Солнечной системе насчитывается 8 планет, которые вращаются вокруг единственной звезды в нашей системе – Солнца.

Планеты Солнечной системы по порядку:

  1. Меркурий;
  2. Венера;
  3. Земля;
  4. Марс;
  5. ;
  6. Сатурн;
  7. Уран;
  8. Нептун.

Существует гипотеза о 9-ой планете Солнечной системы, которую якобы обнаружили на задворках галактического пространства. Но эта информация теоретическая и не имеет документального подтверждения, поэтому у объекта нет классификации, названия и официального статуса. Самая близкая к Солнцу планета — это Меркурий, самая удаленная – Нептун.

Солнце и планеты

Солнце неотделимо от планет, а планеты от Солнца.

Иногда астрономы неформально делят эту структуру на отдельные регионы. Первый, внутренняя Солнечная система, включает четыре планеты земной группы и пояс астероидов. За ним лежит внешняя Солнечная система, которая включает четыре газовых гиганта. Между тем есть и крайние части Солнечной системы, которые считают отдельным регионом, содержащим транснептуновые объекты, то есть объекты за Нептуном.

Большинство планет Солнечной системы обладают собственными вторичными системами, вокруг них вращаются планетарные объекты — естественные спутники (луны). У четырех планет-гигантов также есть планетарные кольца — тонкие полосы мельчайших частиц, вращающихся в унисон. Большинство крупнейших естественных спутников находятся в синхронном вращении, будучи постоянно повернутыми одной стороной к своей планете.

Солнце, которое содержит почти всю материю Солнечной системы, на 98% состоит из водорода и гелия. Планеты земной группы внутренней Солнечной системы состоят в основном из силикатных пород, железа и никеля. За поясом астероидов планеты состоят в основном из газов (водорода, гелия) и льдов — метана, воды, аммиака, сероводорода и диоксида углерода.

Объекты подальше от Солнца состоят в основном из материалов с более низкими точками плавления. Ледяные вещества составляют большинство спутников планет-гигантов, а также Урана и Нептуна (поэтому иногда мы называем их «ледяными гигантами») и многочисленных объектов, лежащих за орбитой Нептуна.

Газы и льды считаются летучими веществами. Граница Солнечной системы, за которой эти летучие вещества конденсируются, известна как «снеговая линия», находится в 5 а. е. от Солнца. Объекты и планетезимали в поясе Койпера и облака Оорта состоят по большей части из этих материалов и камня.

Приливный эффект в облаке Оорта и на Земле

Таким же образом, как Луна воздействует на моря, поднимая прилив, был сделан вывод, что Галактически это явление происходит. Расстояние между одним телом и другим уменьшает силу тяжести, которую одно влияет на другое. Чтобы понять описываемое явление, мы можем взглянуть на силу, которую гравитация Луны и Солнца оказывает на Землю. В зависимости от положения Луны по отношению к Солнцу и нашей планете приливы могут различаться по величине. Выравнивание с Солнцем влияет на такую ​​гравитацию на нашей планете, что объясняет, почему прилив так сильно поднимается.

В случае Облака Оорта, допустим, оно представляет моря нашей планеты. И Млечный Путь будет представлять Луну. Это приливный эффект. В результате, как и в графическом описании, происходит деформация к центру нашей галактики

Принимая во внимание, что гравитационная сила Солнца ослабевает по мере того, как мы удаляемся от него, этой небольшой силы также достаточно, чтобы нарушить движение некоторых небесных тел, заставляя их возвращаться к Солнцу

Рейтинг планет по размеру: от самой маленькой до самой большой

Приведем список размеров планет Солнечной системы по возрастанию размера, а также дадим им краткую характеристику:

Меркурий первый самый малый

Меркурий — 2439,7 км. Ближе всех расположен к Солнцу и быстрее всех оборачивается вокруг него. Не имеет спутников и полноценной атмосферы. Поверхность Меркурия изрыта кратерами в результате многочисленных столкновений с метеоритами. Магнитное поле очень слабое.

Марс второй

Марс — 3389,5 км. Четвертый по удаленности от Солнца. По строению и размерам схож с Землей. Атмосфера сильно разряжена и состоит из остаточных следов метана и углекислого газа. Марсианский рельеф разнообразен, в подповерхностных слоях содержится вода в виде льда. Марс имеет два спутника: Фобос и Деймос.

Венера третья в списке

Венера — 6052 км. Вторая по удаленности и единственная планета, которая по размерам подобна Земле. Спутников не имеет. Венерианская атмосфера представляет собой смесь углекислого газа и концентрированных кислот. В ее нижних слоях зарегистрированы экстремально высокие температуры. Также оба объекта схожи по строению. Особенностью Венеры является вытянутая траектория движения и крайне низкая скорость осевого вращения.

Земля четвертая

Земля — 6371 км. Единственный известный космический объект, на котором возможна жизнь. Имеет 1 естественный спутник – Луну. Обладает плотной кислородосодержащей атмосферой и разнообразным рельефом.

Нептун пятый

Нептун — 24622 км. Первый из списка гигантов и самый дальний среди них. Под водородно-гелиевой атмосферой Нептун прячет оболочку изо льда углеводородного происхождения. Обладает самыми быстрыми и крупными ураганами. На данный момент открыто 14 спутников и система пылевых колец вокруг Нептуна.

Уран шестой

Уран — 25362 км. Шестая по размерам планета Солнечной системы и самая холодная среди всех объектов группы. Имеет сложную магнитосферу со смещенными магнитными полюсами. Главная особенность — ретроградное вращение по орбите и большой угол наклона относительно оси («лежит на боку»). Известно 27 спутников и 13 урановых колец.

Сатурн седьмой

Сатурн — 58233 км. Второй по размерам гигант Солнечной системы. Имеет развитую систему колец и более 62 спутников. По диаметру почти в 10 раз больше Земли (если то точнее то в 9.5).

Юпитер самый большой из всех

Юпитер — 69912 км. По диаметру и массе Юпитер уступает лишь Солнцу. Имеет более 80 спутников и несколько слабых колец. Обладает сильнейшей магнитосферой, влияющей на другие объекты системы. В химическом составе преобладают водород и гелий в различных агрегатных состояниях.

Формирование Солнечной системы

Есть некоторые споры о том, как возникла Солнечная система.

В настоящее время наиболее известным объяснением является то, что она образовался около 4,6 миллиарда лет назад.

Солнце родилось из солнечной туманности, облака газа и пыли.

Планеты и другие объекты Солнечной системы также образовались из того же облака.

Наша Солнечная система развивалась миллионы лет.

Сначала образовалось Солнце, затем планеты и, наконец, луны, астероиды, метеороиды и другие малые планеты.

Солнце родилось

  • Приблизительно 4,6 миллиарда лет назад большое облако газа и пыли было потревожено какой-то силой. Ученые предположили, что эта сила была соседней сверхновой;
  • В результате этого возмущения и энергии, введенной в облако, оно начало двигаться;
  • Как только движение началось, облако начало разрушаться само по себе из-за собственной гравитации;
  • В процессе коллапса облако начало вращаться и нагреваться;
  • По мере того как облако продолжало разрушаться, температура облака продолжала расти, а его вращение становилось все быстрее и быстрее. В результате облако в конечном итоге начало сплющиваться в форме диска, большая часть массы которого находилась в его центре;
  • В какой-то момент давление и температура в центре облака стали настолько высокими, что начался ядерный синтез. Тогда-то и родилось Солнце.

Планеты сформировались

  • После рождения Солнца газы и пыль дальше от центра диска начали остывать и конденсироваться в мельчайшие частицы;
  • По мере того как образовывалось все больше и больше частиц, они начали сталкиваться друг с другом и слипаться, создавая таким образом частицы размером с камни и валуны;
  • Подобно более мелким частицам, которые столкнулись, частицы размером с валун начали сталкиваться и соединяться друг с другом. Эти более крупные тела известны как планетезимали;
  • В конце концов, достаточное количество планетезималей объединилось, чтобы сформировать планетарные зародыши;
  • В отличие от мелких частиц, валунов и планетезималей, зародыши планет были достаточно массивными, чтобы оказывать значительное гравитационное воздействие на окружающие объекты. Следовательно, вместо случайных столкновений между объектами планетарные зародыши притягивали к себе предметы в окружающей области;
  • Как только весь материал в области каждого планетарного зародыша был втянут, планеты родились.

Другие объекты Солнечной системы

  • Весь другой важный материал в Солнечной системе, который не соединился, чтобы сформировать Солнце или планеты, сконденсировался, чтобы сформировать луны, астероиды или кометы;
  • Со временем орбиты планет и других тел стабилизировались в Солнечную систему, которую мы знаем сегодня.

Обнаружение и название

Впервые в 1930 году
астроном Фредерик Леонард предположил существование транснептуновых объектов.
Он считал, что за Нептуном скрывается не только Плутон.

В 1943 году исследователь
Кеннет Эджворт выдвинул предположение о наличии за орбитой восьмой планеты
туманности, заполненной мелкими небесными телами. Они в силу своей рассеянности
не смогли превратиться в единую планету.

В 1951 году Джерард
Койпер полагал, что если и был пояс за Нептуном, то по сей день он не
сохранился. Причиной этому явилось неверное суждение о том, что Земля и Плутон
примерно одинаковы по размерам.

Джерард Койпер

Следующие десятилетия
теория трансформировалась. В 1962 году астрофизик Алистер Камерон выдвинул
гипотезу существования гигантской массы мелкого космического вещества по краю
нашей Солнечной системы. 1964 год ознаменовался теорией о «грязном снежке»
Фреда Уиппла. Она рассказывает о составе комет, который представляется смесью
космической пыли и льда. Однако в ходе наблюдений эта теория была исключена.

Новые подтверждения
наличия зоны транснептуновых тел были результатом после исследования комет. В
1988 году канадские ученые на основе исследовательской статьи Хулио Фернандеса
и произведенных расчетов по возвращению хвостатых звезд подтвердили
существование «кометного пояса». Уже тогда было понятно, что в нем находится
множество мелких объектов, формируются кометы с хвостом. Пояс Койпера получил
такое имя, так как это название было обозначено в самом первом предложении
статьи Х. Фернандеса. Неопровержимые доказательства в подтверждение слов
канадцев привели Девид Джуит и Джейн Лу. В августе 1992 года на снимках из
космоса они лицезрели первый объект из массы тел этой области, спустя еще
полгода – второй. По сей день открываются новые объекты.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: