Сатурн: история окольцованной планеты

Планеты, видимые в телескопы 250-300 мм.

Лучшее из того, что можно приобрести в сегменте “любительских” телескопов – мечта землянина влюбленного в космос и целый чемодан денег. С такими моделями вы не сможете путешествовать или запросто брать собой на прогулку, но только они позволят вам увидеть в Солнечной системе почти всё.

Сразу скажу – такие приборы нет смысла искать на алиэкспресс (в общем-то и из предыдущего апертурного диапазона там тоже не стоит ничего искать) или добыть с рук. Вам действительно нужно будет посетить магазин, причем не любой, а тот, что специализируется на телескопах или оптических инструментах. При этом, я уже упоминал – это будет очень не дешевая покупка.

Телескопы с такой апертурой для новичка или интересующегося любителя скорее всего будут избыточными, поскольку для получения максимальной отдачи от приобретения, его владельцу придется вникать в весьма не простые тонкости настроек. Гораздо лучше рассматривать их как следующий логичный шаг для тех, кто уже освоил “любительское” звездное небо и чувствует, что теперь хочет большего.

Планета Видимость Уровень детализации
Меркурий Да
Венера Да Различимы фазы, можно достаточно точно получать представление о том, что происходит в атмосфере нашей звездной соседки.
Луна Да Обитателям Луны теперь не спрятаться!
Марс Да Видны все основные детали поверхности.
Юпитер Да Юпитер как на фото! Видны спутники.
Сатурн Да Прекрасно различимы кольца планеты, планета, спутники.
Уран Да Видны детали в атмосфере, но не всегда.
Нептун Да Иногда можно увидеть изменения в атмосфере. Но условия для наблюдений должны быть идеальными.
Плутон Да Как маленькая, трудно различимая точка и только при особых условиях наблюдения. Тем не менее – это наиболее дальний для наблюдения объект в Солнечной системе и вы его увидели.

Кольца Сатурна

Кольцевая система Сатурна является самой известной в Солнечной системе. Сами кольца в основном состоят из миллиардов мельчайших частиц льда, а также пыли и других комичных обломков. Этот состав объясняет, почему кольца видны с Земли в телескопы — лед имеет очень высокое отражение солнечного света.

Среди колец существует семь широких классификаций: A, B, C, D, E, F, G. Каждое кольцо названо в соответствии с английским алфавитом в порядке частоты обнаружения. Наиболее заметными с Земли кольцами являются A, B и C. На самом деле каждое кольцо состоит из тысяч более мелких колец, буквально спрессованных друг с другом. Но есть зазоры между основными кольцами. Расстояние между кольцами А и В самое большое из этих расстояний и составляет 4700 м.

Главные кольца начинаются на расстоянии около 7000 км над экватором Сатурна и простираются еще на 73000 м. Интересно отметить, что, несмотря на то, что это очень значительный радиус, реальная толщина колец не превышает одного километра.

Наиболее распространенной теорией, объясняющей образование колец, является теория о том, что на орбите Сатурна под действием приливных сил спутник средних размеров распался в тот момент, когда его орбита слишком приблизилась к Сатурну.

самая крупная планета Солнечной системы

Юпитер — самая крупная планета Солнечной системы. Расположена она на пятой орбите от Солнца.Относится к категории газовых гигантов и в полной мере оправдывает правильность такой классификации.

Юпитер получил своё название в честь древнего верховного бога-громовержца. Вероятно, из-за того, что известна планета была с давних времён и иногда встречалась в мифологии.

Краткая характеристика планеты Юпитер

Масса и размер.Если сопоставить размеры Юпитера и Земли — можно понять, насколько сильно они отличаются. Юпитер превосходит по радиусу нашу планету более чем в 11 раз.При этом масса Юпитера больше массы Земли в 318 раз! И это ещё сказывается маленькая плотность гиганта (уступает земной почти в 5 раз).

Строение и состав.Ядро планеты, что весьма интересно, является каменным. Его диаметр около 20 тысяч километров.Затем следует слой металлического водорода, имеющий вдвое больший диаметр, нежели ядро. Температура этого слоя колеблется от 6 до 20 тысяч градусов.Следующий слой составляет субстанция из водорода, гелия, аммиака, воды и другого. Её толщина также около 20 тысяч километров. Что интересно, у поверхности этот слой имеет газообразную форму, но потом постепенно переходит в жидкую.Ну и последний, внешний слой — состоит, по большей части, из водорода. Также есть некоторая часть гелия и чуть меньше — других элементов. Этот слой газообразный.

Орбита и вращение.Скорость движения Юпитера по орбите не очень велика. Полный оборот вокруг центральной звезды планета совершает почти за 12 лет.А вот скорость вращения вокруг своей оси, наоборот, высока. И даже более — самая высокая среди всех планет системы. Оборот занимает чуть меньше 10 часов.

Информация про планету Юпитер

Атмосфера.Атмосфера Юпитера состоит примерно на 89% из водорода и 8-10% из гелия. Оставшиеся крохи приходятся на метан, аммоний, воду и другое.При наблюдении издалека, хорошо видны полосы Юпитера — различные по составу, температуре и давлению слои атмосферы. Они даже цвет имеют разные — одни светлее, другие темнее. Иногда они движутся вокруг планеты в различных направлениях и почти всегда — с различной скоростью, что весьма красиво.

В атмосфере Юпитера происходят ярко выраженные явления: молнии, штормы и другие. Они имеют куда большие масштабы, нежели на нашей планете.

Температура.Несмотря на удалённость от Солнца, температуры на планете весьма высокие.В атмосферы — примерно от -110 °C до +1000 °C. Ну а с уменьшением расстояния до центра планеты, растёт и температура.Но происходит это вовсе не равномерно. Особенно для его атмосферы — изменение температуры в разных её слоях происходит довольно неожиданным образом. Пока что не удаётся объяснить все такие изменения.

Интересные факты о Юпитере

— Из-за быстрого вращения вокруг своей оси, Юпитер немного вытянут в высоту. Так, экваториальный его радиус превосходит полярный почти на 5 тысяч километров (71,5 тысяч км и 66,8 тысяч км соответственно).

— Диаметр Юпитера максимально приближен к пределу для планет подобного типа строения. При теоретическом дальнейшем увеличении планеты — она стала бы сжиматься, а её диаметром при этом оставался бы почти неизменным. Таким, который она имеет и сейчас.

— В атмосфере Юпитера находится гигантский непрекращающийся ураган — так называемое Красное пятно Юпитера (из-за его цвета при наблюдении). Размеры этого пятна превышает несколько диаметров Земли! 15 на 30 тысяч километров — примерно таковы его размеры (и это он ещё уменьшился в 2 раза за последние 100 лет).

— Планета имеет 3 очень тонких и незаметных кольца.

— На Юпитере идут дожди из алмазов.

— Юпитер имеет самое большое количество спутников среди всех планет Солнечной системы — 67.На одном из этих спутников, Европе, находится глобальный океан, достигающий глубины 90 километров. Объём воды в этом океане больше объёма океанов Земли (хотя по размерам спутник заметно уступает Земле). Возможно, в этом океане есть живые организмы.

Какая она планета Сатурн

По оценке учёных, экваториальный радиус 60300 км, а вот на полюсах составляет 54400 км. При этом масса более чем на 85% больше земной, но его плотность всего лишь 0,687 г/см3, что является самым меньшим показателем среди других газовых гигантов. Между тем, структура планеты, как и у других газовых гигантов. Если говорить точнее, то:

  1. Во-первых, в центре располагается твёрдое массивное ядро, которое состоит из силикатов, металлов, и по некоторым предположениям, льда. Его масса составляет примерно 22 масс Земли, а температура 11700 градусов по Цельсию. При этом Сатурн излучает энергии в разы больше получаемой им солнечной.
  2. Во-вторых, посередине находится мантия, образованная металлическим водородом и плавно переходящая во внешнюю часть.
  3. И наконец, довольно плотная газовая оболочка покрывает все недра и не имеет определённой границы с мантией. Собственно говоря, твёрдой поверхности на планете также как у собратьев нет.

Атмосфера и температура

Как у всех газовых гигантов, в составе атмосферы преобладают водород (96,3%) и гелий (3,25%). Также имеются следы метана, аммиака, фосфина, этана и других газов.

По данным астрономов, сильные ветра дуют в восточном направлении, то есть аналогично осевому вращению. Их скорость может достигать 500 м/с, но чем дальше от экватора, тем они слабее. К тому же, в южном и северном полушарии ветряные потоки пропорциональны по отношению к экватору. Возможно, они каким-то образом взаимосвязаны.

Иногда образуются очень мощные ураганы и полярные сияние, несравнимые ни с какими в Солнечной системе. Более того, случаются бури и штормы, сопровождаемые сильнейшими молниями.

К удивлению, на северном полюсе обнаружили необычное огромное облачное образование, названное шестиугольником гексагон (правильный многоугольник, имеющий шесть сторон). Причём он намного больше Земли по размеру. А его продолжительность вращения 10 часов 39 минут, что соответствует периоду изменения интенсивности радиоизлучения и времени вращения внутренней части планеты. Пока учёные не смогли точно объяснить это явление.

Причём средняя температура этого газового гиганта равна -185 градусов по Цельсию. Для сравнения на земной поверхности была самая зафиксирована самая минимальная температура -89,2 градуса. Другими словами, Сатурн намного холоднее нашего дома.

Орбита и вращение

В первую очередь, была рассчитана удалённость от главной звезды, которая в среднем равна 1430 млн км. При этом оборот вокруг Солнца занимает 29,5 лет, а средняя скорость движения 9,69 км/с. Затем, само собой, определили расстояние между Сатурном и Землёй- оно колеблется от 1195 до 1660 млн км.

В то же время, полный оборот вокруг своей оси Сатурн совершает за 10 часов 34 минуты и 13 секунд. Между прочим, на экваторе скорость вращения выше, чем на орбите. По наблюдениям радиоизлучения обнаружилось, что продолжительность оборота на планете в разных областях различается. Например, внутренние части проделывают его быстрее примерно на 30 секунд в сравнении с поясами. Вероятнее всего, на это влияет эксцентриситет орбиты, который равен 0,056.

Сколько длится день на Сатурне?

Сатурн совершает один оборот вокруг своей оси всего за 10 часов 32 минуты — это второй самый короткий день среди планет нашей Солнечной системы. Только Юпитер вращается быстрее. Из-за высокой скорости вращения Сатурн сплюснут на полюсах и расширяется к экватору.

Сколько длится год на Сатурне?

Подобно Юпитеру, Сатурн очень быстро вращается вокруг своей оси, однако ему требуется немало времени, чтобы совершить один оборот вокруг Солнца. Скорость, с которой Сатурн вращается вокруг звезды, мала: один год на планете длится 29,4571 земных лет или 10 759 земных дней.

Оптический телескоп «Сюньтянь»

Телескоп Китайской космической станции (CSST) «Сюньтянь» или «Небесный часовой» — автономный орбитальный модуль с оптическим телескопом.

Запуск «Сюньтянь» запланирован на 2024 год. Телескоп будет вращаться вокруг Земли по той же орбите, что и китайская модульная станция. Он сможет периодически приближаться и стыковаться с ней, чтобы экипаж проводил необходимый ремонт и менял приборы.

Телескоп «Сюньтянь»

(Фото: CSNA)

Огромная линза делает «Небесного часового» сопоставимым с «Хабблом». При этом обзор китайского телескопа будет в 300 раз больше при таком же высоком разрешении. Благодаря широкому полю зрения он сможет наблюдать до 40% пространства в течение десяти лет.

Телескоп Китайской космической станции будет вести наблюдение в ближнем ультрафиолетовом и видимом свете, а также исследовать свойства темной материи, формирование и эволюцию галактик.

Цвет Сатурна при наблюдении в телескоп

При наблюдении в любительские телескопы цвет Сатурна однозначно желтый. Хотя фотографии не совсем точно передают визуальные наблюдения, посмотрите, как выглядит планета в небольшой инструмент.

Примерно так выглядит планета Сатурн при наблюдении ее в хороший телескоп. Фото: Michael Karrer

В целом, оттенки, которые наблюдаются на Сатурне, похожи на цвета Юпитера. Однако у Сатурна они гораздо менее выражены.

Сравнительный цвет Юпитера и Сатурна при наблюдении в любительский телескоп. Автор построил это изображение из снимков, сделанных через инструмент Celestron C9. Фото: frankastro

Солнечные вспышки (солнечные трясения)

Что такое солнечная буря, (солнечная вспышка)? О ней пишут, о ней говорят, ее обсуждают, ее ждут. Но что это такое никто точно сказать не может.

Единственным достоверным фактом является то, что вспышки без присутствия солнечных пятен не возникают.

Во время мощной вспышки поток ультрафиолетового, рентгеновского и гамма излучения увеличивается во много тысяч раз. Радиоактивное фотонное излучение достигает Земли через восемь минут после начала вспышки. Через несколько десятков минут долетают потоки заряженных частиц, а через двое-трое суток до Земли доходят облака электронов и протонов.

Озоновый слой и вся атмосфера Земли встают на защиту от смертельных доз излучения, а геомагнитное поле – от заряженных частиц. Однако на 100% от жесткого излучения защититься не удается, поэтому угроза от солнечных вспышек существует

Вспышки могут повредить спутники, облучить космонавтов, повлиять на работу авиакомпаний и электросетей, поэтому важно их прогнозировать и понимать природу их возникновения

«Солнечные вспышки, как правило, происходят в местах взаимодействия солнечных пятен противоположной магнитной полярности или, более точно, вблизи нейтральной линии магнитного поля, разделяющей области северной и южной полярности. Частота и мощность солнечных вспышек зависят от фазы 11-летнего солнечного цикла» .

Вспышка – это фонтан энергии, с температурой до 30 тысяч градусов. Это короткоживущий процесс, который длится около одной минуты. Эти сведения подвигают меня к мысли о солнечной молнии. Если вспышка мощная, то процесс высвечивания плазмы может продолжаться значительное время (десятки минут, иногда достигает часов). Все зависит от масштаба грандиозного явления.

Поскольку солнечные пятна – это нестабильные процессы, происходящие в фотосфере, то можно сделать предположение, что вспышка – результат нестабильных (переходных) процессов. По своей сути, солнечная вспышка – это мощнейшая молния! Что значит мощнейшая? В этот контекст я вкладываю сумму параллельно сложенных элементарных молний. Это огромный поток ионизированных частиц в едином порыве замыкается с противоположным по знаку таких же частиц, выброшенных давлением Солнца.

На самом деле все эти жгуты-проводники состоят из отдельных молний, но на общем световом фоне фотосферы мы их наблюдаем в виде оттенков более светлых тонов, пульсаций.

Магнитные линии (см. снимок ниже), по которым устремляются заряженные частицы плазмы, имеют очень малое отклонение и уходят вверх. Это говорит насколько масштабное и сильное магнитное поле солнечного пятна. На снимке видно начало зарождения вспышки на краю пятна.

В момент удара такой молнии в плазме возникает мощное давление газов, после происходит выброс коронарной плазмы и солнцетрясение.

Солнечное пятно, сфотографированное в «анфас» солнечной космической обсерваторией Hinode. Выбросы плазмы вверх по изгибающимся линиям магнитного поля.

В отличие от землетрясений, которые рождают короткие всплески волн на Земле, в недрах Солнца, благодаря солнечным молниям, создается постоянный сейсмический шум и мощные солнцетрясения. Но, поскольку солнечное вещество не твердое, а плазменное, то сейсмические волны быстро затухают.

Солнечные вспышки представляют собой уникальные по своей силе и мощности выделения тепловой, кинетической, сейсмической и световой энергии Солнца.

Рейтинг планет солнечной системы по размеру

1. Юпитер (диаметр – 142974 км) 

Лидирующую позицию занимает именно Юпитер. Он по праву самая большая планета солнечной системы.

2. Сатурн (диаметр – 116400 км)

Еще один гигант. Знаменит своими кольцами, которые с легкостью просматриваются. В состав атмосферы Сатурна входит водород, аммиак и гелий. Как и на его собрате, на шестой планете буйствуют ветры, чья скорость превышает 1800 км/ч. Примечательно, что на полюсе Сатурна бушует ураган, по форме напоминающий идеально ровный шестигранник. Вокруг Сатурна вращаются 62 спутника.

3. Уран (диаметр – 50724 км)

Настоящий ледяной гигант в Солнечной системе. Несмотря на то, что в размерах он занимает третье место, лидирующую позицию Уран получает за самую низкую температуру среди гигантских планет –224°С. Нагрев идет лишь благодаря солнечному излучению. Такая низкая температура создается из-за малой плотности. 

Состоит он из скального ядра, окруженного водой, аммиаком и метаном. Атмосфера содержит водород, гелий и метан.

Уран имеет небольшие кольца, 27 ледяных и каменистых спутников. 

Интересно положение Урана – он вращается вокруг главной звезды боком. Поэтому Солнце освещает то Южный, то Северный полюс Урана с разницей в 42 года. 

4. Нептун (диаметр – 49224 км)

Еще один ледяной гигант и последняя планета от Солнца. Как и Уран, состоит изо льда, но в нем присутствуют множества горных пород.  

На поверхности Нептуна дуют невероятные ветра. Их скорость составляет 600 км/с, что практически приравнивается к сверхзвуковой скорости. 

Интересно, что изначально вычислили положение планеты, а уже после произошло открытие Нептуна. 

5. Земля (диаметр – 12742 км)

Третья планета Солнечной системы, возраст которой 4,54 млр лет. Земля занимает самое выгодное положение в космосе – если бы планета была чуть ближе к Солнцу, то все воды бы испарились, превратившись в пар, а чуть дальше – заледенели.  

Единственный земной спутник – Луна. Именно она воздействует на отливы и приливы океанов, стабилизирует наклон планеты на оси. 

Атмосфера состоит из кислорода и азота, наполнена водяными парами, что сглаживает перепады температуры. Помимо этого, атмосфера оказывает защитные свойства – небольшие метеориты, попав в нее, моментально сгорают.

Земля также обладает магнитным полем, отражающим вредное солнечное излучение.

6. Венера (диаметр – 12103 км)

Венера и Земля – довольно схожи по строению, но ее атмосфера включает углерод и серу, создающих «парниковый» эффект, а облака Венеры – ядовитые соединения. Поверхность планеты покрывают вулканы и гигантские горы, отчего на планете беспокойно и очень жарко, температура достигает 475°С. 

7. Марс (диаметр – 6780 км)

Еще одна планета, схожая с Землей по каменистой поверхности. Смена сезонов такая же, как и на земле, а сутки равняются 24 ч 40 мин. Температура меняется от –150°С до +20°С в зависимости от времени года. В южной части замечено, что зима более холодная, а лето жаркое, а в северной климат более мягкий. 

На Марсе нет скопления ядовитых веществ, атмосфера – углекислый газ с небольшими примесями. Однако на четвертой планете отсутствует магнитное поле, отчего она подвергается излучению.

8. Меркурий (диаметр – 4879 км)

Первая планета от главной звезды и последняя в рейтинге планет по размерам. Из-за положения оси вращения вокруг Солнца на Меркурии нет смены времен года. Температура достигает +427°С, а ночью резко падает до –170°С. 

Поверхность планеты напоминает Луну – каменистая с огромным количеством кратеров. Не так давно были подтверждены сведения, что в тенистой части Меркурия в глубоких кратерах находится ледяная вода. 

9. Плутон (диаметр – 2370 км)

Когда-то Плутон являлся полноправной планетой, но в 2006 г. его разжаловали, отнеся к категории карликовых планет. Его масса – 1/6 общей тяжести Луны. Поверхность Плутона – сплошной камень и лед, а температура –230°С.

На самом деле далеко не все планеты были исследованы в Солнечной системе, а за пределами ее и подавно. Хотя из данных, уже известных, можно с уверенностью сказать, что Юпитер уступает своими размерами и массой планетам других галактик, но мы знаем, как называется самая большая планета нашей системы.

Наука не стоит на месте, и, быть может, человечеству станет доступнее изучение строения далеких планет, в том числе будет разгадана загадка Большого красного пятна газового гиганта. 

Формирование и состав спутников Сатурна

Шестую планету в Солнечной системе должен безошибочно нарисовать даже ребёнок.

Визитная карточка планеты – сказочные кольца из звёздной пыли и огромных кристаллов льда. В 1921 г кольца у Сатурна исчезли. Падкая на сенсации пресса напугала, будто эти кольца летят на Землю. А они всего лишь изменили положение, повернулись ребром.

Наличие такого количества спутников определяется особенностями формирования Сатурна. Образовались они, естественно, в период формирования Солнечной системы, хотя сегодняшние результаты моделирования, указывает нам на то, что неким лунам не более 100 млн. лет.

Согласованность в движении частиц колец и спутников планеты, даёт нам уверенность, что и те, и другие образовывались одновременно, чтобы создать единый слаженный механизм — кольцевую систему.

Для скульптурного эффекта и устойчивости колец существуют спутники-пастухи, они вращаются и за пределами планеты и внутри колец. Коорбитальные, как Эпиметей и Янус, почти одинаковые по размеру спутники, из-за гравитационного воздействия меняют свои орбиты каждые 4 года.

Внутренние луны, такие как Тефия, Диона, Мимас, Энцелад, вращаются по стабильной орбите, ближе к планете, внешние же – Титан, Рея, Япет, вращаются за пределами кольца Е.

Один из спутников, имеющий нерегулярную орбиту, такой как Феба, вращается по часовой стрелке, в противоположном направлении к планетарному движению.

При каком увеличении телескопа лучше всего видеть планеты

Увеличение любого телескопа определяется по формуле:

Увеличение = фокусное расстояние телескопа / фокусное расстояние окуляра

Однако невозможно изменить фокусное расстояние телескопа, используя разные окуляры, в зависимости от них увеличение будет большим или меньшим.

Меньшее увеличение позволит вам рассмотреть большую область неба, что позволит вам видеть более мелкие объекты и быстрее определять их местонахождение (попробуйте на длинном фокусе “поймать” быстро движущуюся комету).

Большее увеличение, даст узкий участок наблюдения, но больше деталей. Для крупных и “медленных” объектов, таких как планеты, этот вариант использовать предпочтительнее. Но, как уже отмечалось ранее – существует предел того, насколько вы можете “увеличивать увеличение” своего телескопа. Когда вы достигнете этой точки, в независимости от того, насколько вы попытаетесь увеличить фокусное расстояние, это уже мало что даст, поэтому лучше сэкономить деньги и не тратить деньги на окуляры большего размера.

Вычислить этот максимум просто, ведь оно определяется апертурой телескопа.

Умножьте значение апертуры на 2,5x и получите примерное значение.

К примеру, для телескопа с апертурой 100 мм, максимальное увеличение будет высчитано так:

maxMag = 100 x 2,5 = 250

Марс в телескоп. Правда в космический телескоп (Хаббл) – с Земли такой четкости удается достигнуть не каждый день

Также, чтобы было проще соотносить цифры и факты, добавлю несколько примеров:

При увеличении в 40 крат, Луна полностью будет видна наблюдателю и на её поверхности можно будет отчетливо различить крупные кратеры. Во всяком случае, если вы не видели Луны в телескоп раньше, то даже эти 40 крат вас действительно впечатлят. Если же поднять увеличение до 100 крат – вы увидите и массу кратеров поменьше и явственно различите горы, “моря” и т.п. детали рельефа.

Галилео Галилей открыл спутники Юпитера пользуясь телескопом, дающим от силы 20-40 крат, однако надо понимать – естественно он не видел эти спутники также, как мы можем видеть их сегодня в любительский 100-мм телескоп (не путайте кратность увеличения и диаметр апертуры!), для него это были едва заметные движущиеся точки, ведь и сам гигант-Юпитер при таком увеличении представляется не больше цветной горошинки.

Нам же, избалованным оптикой, даже 100 кратное увеличение того же Марса или Юпитера будет казаться слишком “мелким”. Однако, для новичка любующегося красотами космоса и такое зрелище выглядит очень впечатляющим.

250 кратное увеличение (т.е. телескоп с апертурой выше 100 мм) – вполне достаточно для того, чтобы комфортно рассмотреть крупные детали на ближайших планетах. И, “теоретически”, при увеличении в 250 крат, уже можно наблюдать даже внегалактические объекты, такие как звездные туманности, причем не в виде ещё одной “звездочки”, а именно как туманности. Правда, тут ещё понадобятся светофильтры (чтоб повысить контрастность), но это уже совсем другая история.

Как уже можно понять – если кратность увеличения (и апертура телескопа) будут ещё выше – деталей будет больше, а объекты станут четче. Тем не менее, даже располагая очень дорогим домашним телескопом, вы не сможете увидеть, как туманность при увеличении “разрешается” на звезды из которых она состоит, а далекие объекты, такие как Плутон, Уран, Нептун и т.п. становятся похожими на снимки полученные с космического телескопа “Хаббл”.

Сравнительный внешний вид телескопа рефлектора и телескопа рефрактора

Предстоящие события

Все астрономические события, связанные с Сатурном, можно посмотреть в календаре Sky Tonight. Запустите приложение, нажмите на иконку лупы в нижней части экрана и введите название планеты в строку поиска, а затем нажмите на соответствующий результат. Во вкладке “События” вы найдете список астрономических событий, связанных с Сатурном.

16 февраля: Сатурн в соединении с Солнцем

16 февраля, в 19:17 по московскому времени (16:17 GMT), Сатурн пройдет рядом Солнцем и на несколько недель затеряется в его лучах. Расстояние между двумя небесными телами составит 1°15′. В это же время Сатурн будет находиться на максимальном расстоянии от Земли (10.81 а.е.) – если бы в этот момент его можно было увидеть, вам бы показалось, что он уменьшился. Не пытайтесь найти Сатурн на небе, когда он находится близко к Солнцу: это может привести к необратимой потере зрения.

19 марта: Сатурн рядом с Луной

19 марта в 18:22 по московскому времени (15:22 GMT), убывающая Луна (звездная величина -9,8) будет в соединении с Сатурном (звездная величина 0,8) в созвездии Водолея. Лунный диск, освещенный на 10,5%, пройдет в 3°35′ к югу от Сатурна. В бинокль или телескоп их на таком расстоянии увидеть не получится, так что наблюдайте соединение невооруженным глазом.

27 августа: противостояние Сатурна

27 августа в 17:52 МСК (14:52 GMT) состоится противостояние Сатурна, во время которого планета будет полностью освещена Солнцем и будет ярко сиять со звездной величиной 0,4 в созвездии Водолея. Для невооруженного глаза Сатурн будет выглядеть как желтая точка; в бинокль будет различима овальная форма планеты, а с помощью небольшого 4-дюймового телескопа можно будет разглядеть и кольца Сатурна.

В течение нескольких дней до и после противостояния кольца Сатурна будут сиять необычайно ярко – это называется «эффектом Зелигера». Во время противостояния Солнце светит прямо на Сатурн, если смотреть с Земли, поэтому планета и частицы, из которых состоят ее кольца, полностью освещены и не отбрасывают теней. Кроме того, свет попадает на каждую из частиц и многократно отражается, делая кольца еще ярче.

Как появляются звезды гиганты и сверхгиганты

Как известно, находясь на главной последовательности светило производит энергию благодаря реакциям, происходящим внутри ядра. То есть оно расходует водород. За счёт чего синтезируется гелий. Но он не участвует в термоядерных процессах.

А вот после того, как водородный запас иссякает, ядро сжимается и в ход идёт гелий. При его сгорании внешние слои, наоборот, расширяются. Следовательно, увеличивается температура и площадь излучаемой поверхности.

В результате светимость повышается. Однако высвобождение энергии становится меньше, и поверхность уменьшается. Как следствие, она охлаждается. Правда, дальнейшую судьбу решает масса звёздного тела.

UY Щита (Красный гипергигант)

Эволюция светил малой массы

Например, если массивность меньше 0,35 массы нашего Солнца, то эволюционировать в гигантское светило не сможет. Скорее всего, его ждёт стадия голубого, а затем белого карлика.

При условии, что звезда имеет среднюю массу, а весь водород сгорит, ядро сожмётся. После этого начнётся горение водорода возле ядра. Что позволит внешним слоям расшириться и остыть. Причем светимость несколько увеличится.

Собственно говоря, объект, прошедший стадию главной последовательности, в котором ещё не горит гелий, относится к классу звезды субгиганты.

Возможно, что у светила масса гелиевого ядра увеличится до предела Чандрассекара. В таком случае, оно резко уплотнится и уменьшится. Либо ядро выродится, либо расширятся внешние слои. При последнем сценарии также возрастёт пространство конвективной зоны, а вещество перемешается. В итоге, тело станет красным гигантом.

Звезда Пистолет (Синий гипергигант)

Светила средней массы

Разумеется, массивность играет важную роль в развитии небесных тел, в том числе и звёзд. К примеру, учёные выявили как продолжают свою жизнь объекты с различными значениями по этой характеристике.

Сценарии развития:

  • С массой не более 0,4 солнечной, горение гелия не начинается. Тогда по окончании водорода внешняя оболочка сбрасывается. И образуется белый гелиевый карлик.
  • При массе больше 0,4 нашего Солнца в ядре вспыхивает гелий. В то же время внутреннее давление падает, светимость снижается и светило переходит на, так называемую, горизонтальную ветвь эволюции.
  • Когда масса несколько меньше 8 солнечных масс, а в ядре гелиевые ресурсы прекращаются, повышается углеродно-кислородное содержание. Далее ядро сжимается и вокруг запускается горение гелия. Причем перемешивание вещества приводит к росту размера и светимости. На этой стадии звёздный объект находится на асимптотической ветви с инертным центром. После чего он, спустя примерно миллион лет становится нестабильным, и формируется в углеродно-кислородный белый карлик.

Таким образом получается, что звезда прошедшая стадию красного гиганта называется белым карликом.

Большая масса

Что важно, при значениях больше 8 солнечных масс вслед за образованием углеродно-кислородного ядра в термоядерных реакциях начинает принимать участие и углерод. Между прочим, гелиевое сгорание запускается не вспышкой, а постепенно

По данным учёных, в светилах с массивностью от 8 до 12 Солнца в дальнейшем возможно горение других, более тяжёлых элементов. Правда, в них железо ещё не горит.

Они проходят этапы эволюции по аналогии с представителями средних значений. Однако их светимость выше, а уцелевший белый карлик имеет другой состав. Если говорить точнее, он богат на кислород, магний и неон. В некоторых случаях может произойти взрыв сверхновой, но это очень редкое явление.

Арктур (Оранжевый гигант)

А вот при массе более 12 солнечных отмечается ещё более высокая светимость. Тогда их уже относят к сверхгигантам. В них синтез протекает с участием всё более тяжёлых элементов, вплоть до железа. Из-за чего образуется железное ядро, которое в последствии коллапсирует, то есть взрывается как сверхновая. В результате формируется нейтронная звезда или чёрная дыра.

Два типа сверхновых

Учёные считают, что существует два различных типа сверхновых. В сверхновой типа I белый карлик оттягивает материал от звезды-компаньона до тех пор, пока не загорится безудержная термоядерная реакция. В итоге белый карлик разлетается на части, разбрасывая обломки по космосу. Сверхновая Кеплера относилась именно к типу I.

В случае сверхновой типа II, которую иногда называют сверхновой с коллапсирующим ядром, звезда истощает свой запас ядерного топлива и коллапсирует под действием собственной гравитации. «Обрушенный» материал затем «отскакивает» назад, вызывая колоссальный взрыв.

Любой тип сверхновой может быть настолько ярким, что на короткое время способен затмит целую галактику! Но особенно интересны сверхновые II типа, потому что они испускают не только свет, но и огромное количество нейтрино. И испускание нейтрино, что интересно, может начаться немного раньше самого взрыва.

Если звезда находится достаточно близко к нам, мы сможем наблюдать некоторые из этих ранних нейтрино до появления сверхновой. То есть до того, как произойдёт коллапс ядра. Например, если красная гигантская звезда Бетельгейзе станет сверхновой, детекторы нейтрино, скорее всего, уловят сигнал за несколько часов или даже дней до того, как станет виден сам взрыв.

То есть астрономы получат некое «оповещение». Его сможет уловить специально разработанная для этого техника. Это сеть детекторов нейтрино, известная как Система раннего предупреждения о сверхновых. Или SNEWS.

Когда взорвалась 1987A, наука о нейтрино находилась в зачаточном состоянии. Но даже несмотря на это, три детектора, работавшие в то время, зарегистрировали два десятка нейтрино. Если сейчас в нашей галактике взорвётся сверхновая, глобальная сеть детекторов зафиксирует сотни или даже тысячи нейтрино.

Эволюция сверхновой 1987A. Фото EKA.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
ДружТайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: